中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 1105-1119 Previous Articles   Next Articles

• Special Issue of Quantum Chemistry •

Approximate Theoretical Methods for Nonadiabatic Dynamics of Polyatomic Molecules

Lan Zhenggang1, Jiushu Shao2   

  1. 1. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
    2. Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
  • Received: Revised: Online: Published:
PDF ( 1435 ) Cited
Export

EndNote

Ris

BibTeX

Nonadiabatic dynamics is ubiquitous in photo-physical and photo-chemical processes. The description of nonadiabatic transitions requires the treatment of coupled electron-nuclei motions. Exact quantum dynamical calculations, due to the insurmountable computational scaling with the size of the system, are only applicable to small molecular systems. In recent years, several approximat methods based on the quantum-classical dynamics were proposed to describe the nonadiabatic dynamics of polyatomic molecular systems. This article provides a concise review of different versions of quantum-classical dynamics approaches including the classical Ehrenfest method, the surface-hopping technique, and the mixed-quantum-classical dynamics in terms of the Winger representation. The pros and cons of the on-the-fly numerical implementation of these schemes combining the ab initio electronic structure calculations are discussed and perspectives on further development of quantum-classical treatment of nonadiabatic dynamics are given. Contents
1 Introduction
2 Hamiltonian and nonadiabatic dynamics
3 Classical Ehrenfest dynamics and surface-hopping dynamics
3.1 Mean-field (or classical Ehrenfest) dynamics
3.2 Surface-hopping dynamics
4 Mixed-quantum-classical dynamics based on wigner representation
5 Conclusions and outlook

CLC Number: 

[1] Born M, Oppenheimer J R. Ann. Phys., (Leipzig), 1927,84: 457-484
[2] Hirst D M. Potential Energy Surfaces, London and Philadelphia: Taylor & Francis, 1985
[3] Domcke W, Yarkony D R, Köppel H. Eds Conical Intersections: Electronic Structure, Dynamcis & Spectroscopy, Singapore: World Scientific, 2004.
[4] Baer M. Beyond Born-Oppenheimer, Hoboken, Wiley, 2006
[5] Baer M. Adv. Chem. Phys., 2002, 124: 39-142
[6] Klessinger M, Michl J(Eds.) Excited States and Photochemistry of Organic Molecules, New York: VCH Publishers, 1995
[7] Shukla M K, Leszczynski J(Eds.) Radition Induced Molecular Phenomena in Nucleic Acids, Springer, 2008
[8] Michl J. Top. Curr. Chem., 1974, 46: 1-59
[9] Yarkony D R, Rev. Mod. Phys., 1996, 68: 985-1013
[10] Bernardi F, Robb M A, Olivucci M. Chem. Soc. Rev., 1996, 25: 321-328
[11] Stenholm S. in Quantum Dynamics of Simple Systems (Eds.) Oppo G-L, Barnett S M, Riis E & Wilkinson M). Amsterdam: SUSSP, 1996. 267-313
[12] Domcke W, Stock G. Adv. Chem. Phys., 1997, 100: 1-169
[13] Kuppermann A. Adv. Chem. Phys., 2002, 124: 283-322
[14] Worth G A, Cederbaum L S. Ann. Rev. Phys. Chem., 2004, 55: 127-158
[15] Leach A R. Molecular Modeling: Principles and Applications. 2nd Ed. England: Pearson Education Limited. 2001
[16] Marx D, Hütter J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. NY: Cambridge University Press, 2009
[17] Stock G, Thoss M. Adv. Chem. Phys., 2005, 131: 243-375
[18] Levine B G, Martínez T J. Annu. Rev. Phys. Chem., 2007, 58: 613-634
[19] Martínez T J. Acc. Chem. Res., 2006, 39: 119-126
[20] Ben-Nun M, Martínez T J. Adv. Chem. Phys., 2002, 121: 439-512
[21] Hunter G. Int. J. Quantum Chem., 1975, 9: 237-242
[22] Mead C A, Truhlar D G. J. Chem. Phys., 1982, 77: 6090-6098
[23] Mead C. A. Rev. Mod. Phys., 1992, 64: 51-85
[24] Nitzan A, Jortner J. J. Chem. Phys., 1971, 55: 1355-1368
[25] Engleman R, Jortner J. Mol. Phys., 1970, 18: 145-164
[26] Bixon M, Jortner J. J. Chem. Phys., 1968, 48: 715-726
[27] Bixon M, Jortner J. J. Chem. Phys., 1969, 50: 4061-4070
[28] Niu Y, Peng Q, Deng C, Gao X, Shuai Z. J. Phys. Chem. A, 2010, 114: 7817-7831
[29] Meyer H D, Manthe U, Cederbaum L S. Chem.Phys.Lett., 1990, 165: 73-78
[30] Wang H, Thoss M, Miller W H. J.Chem.Phys., 2001,115: 2979
[31] Wang H, Thoss M. J.Chem.Phys. 2003, 119: 1289
[32] Meyer H D, Gatti F, Worth G A. (Eds). Multidimensional Quantum Dynamics: MCTDH Theory and Applications, Wiley-VCH, 2009
[33] Berry M V. Proc. R. Soc. London A, 1984, 392: 45-57
[34] Shapere A, Wilczek F.(Eds.) Geometric Phases in Physics. Singapore: World Scientific, 1989
[35] Longuet-Higgins H C, Proc. R. Soc. London A, 1975, 392: 147-156
[36] Drukker K. J. Comp. Phys., 1999, 153: 225-272
[37] Meyer H D, Miller W H. J. Chem. Phys., 1979, 70: 3214-3223
[38] Fiedler S L, Eloranta J. Mol. Phys., 2010, 108: 1471-1479
[39] Andrade X, Castro A, Zueco D, Alonso J L, Echenique P, Falceto F, Rubio A. J. Chem. Theory Comput., 2009, 5: 728-742
[40] Tully J C. Faraday Discuss., 1998, 110: 407-419
[41] Tully J C. Int. J. Quantum Chem., 1991, 40: 299-309
[42] Hillery M, O'Connell R F, Scully M O, Wigner E P. Phys. Rep., 1984, 106: 121-167
[43] Lee H W. Phys. Rep., 1995, 259: 147-211
[44] Curtright T L, Zachos C K. arXiv: 1104.5269v1
[45] Verlet L. Phys. Rev., 1967, 159: 98-103
[46] May V, Kühn, O. Charge and Energy Transfer Dynamics in Molecular systems. Berlin: Willey-VCH, 2000
[47] Weiss U. Quantum Dissipative Systems. London: World Scientific, 1993
[48] Jasper A W, Nangia S, Zhu C, Truhlar D G. Acc. Chem. Res., 2006, 39: 101-108
[49] Zhu C, Jasper A W, Truhlar D G. J. Chem. Theor. Comput., 2005, 1: 527-540
[50] Zhu C, Jasper A W, Truhlar D G. J. Chem. Phys., 2004, 120: 5543-5557
[51] Schwartz B J, Bittner E R, Prezhdo O V, Rossky P J. J. Chem. Phys., 1996, 104: 5942-5955
[52] Bedard-Hearn M J, Larsen R E, Schwartz B J. J. Chem. Phys., 2005, 123: art. no. 234106
[53] Bjerre A., Nikitin E E. Chem. Phys. Lett., 1967, 1: 179-181
[54] Tully J C. J. Chem. Phys., 1990, 93: 1061-1071
[55] Blais N C, Truhlar D G. J. Chem. Phys., 1983, 79: 1334-1342
[56] Webster F, Rossky P J, Friesner R A. Comp. Phys. Commun., 1991, 63: 494-522
[57] Chapman S. Adv. Chem. Phys., 1992, 82: 423-483
[58] Hammes-Schiffer S, Tully J C. J. Chem. Phys., 1994, 101: 4657-4667
[59] Dotsinis N L. Quantum Simulations of Complex Many-Body Systems (eds. Grotendorst J, Marx D & Muramatsu A). Jülich: NIC, 2002. 377-397
[60] Doltsinis N L, Marx D. J. Theo. Comp. Chem., 2002, 1: 319-349
[61] Doltsinis N L, Marx D. Phys. Rev. Lett., 2002, 88: art. no. 166402
[62] Barbatti M. WIREs Comp. Mol. Sci., 2011, 1: 620-633
[63] Barbatti M, Shepard R, Lischka H. Computational and Methodological Elements for Nonadiabatic trajectory Dynamics Simulations of Molecules, in Conical Intersections: Theory, Computation and Experiment. (Eds by Domcke W, Yarkony D R, Koppel H) Singapore: World Scientific, 2010
[64] Barbatti M, Granucci G, Persico M, Lischka H. Chem. Phys. Lett., 2005, 401: 276-281
[65] Barbatti M, Granucci G, Persico M, Ruckenbauer M, Vazdar M, Eckert-Maksi Dc' M, Lischka H. J. Photochem. Photobiol. A, 2007, 190: 228-240
[66] Barbatti M, Lischka H. J. Am. Chem. Soc., 2008, 130: 6831-6839.
[67] Barbatti M, Aquino A. J. A, Szymczak J. J, Nachtigallová D, Hobza P, Lischka H. PNAS, 2010, 107: 21453-21458
[68] Barbatti M. Ultrafast Molecular Dynamics in Excited States Using Mixed Quantum-Classical Approaches, Habilitation Thesis (University of Vienna, Vienna),(论文)2008
[69] Mitri Dc' R, Werner U, Wohlgemuth M, Seifert G, Bona Dc' i Dc' -Kouteck Dy' V. J. Phys. Chem. A, 2009, 113: 12700-12705
[70] Wohlgemuth M, Bona i Dc' -Kouteck Dy' V, Mitric R. J. Chem. Phys., 2011, 135: art. no. 054105
[71] Mitri Dc' R, Petersen J, Bona i Dc' -Kouteck Dy' V. Nonadiabatic Dynamics “on the fly” in Complex Systems and its Control by Laser Fields, in Conical Intersections Ⅱ (Eds.) by Köppel H, Domcke W, Yarkony D R). Singapore: World Scientific, 2011
[72] Werner U, Mitri Dc' R, Suzuki T, Bona Dc i Dc' -Kouteck Dy' V. Chem. Phys., 2008, 349: 319-324
[73] Mitri Dc' R, Bona Dc i Dc' -Kouteck Dy' V, Pittner J, Lischka H. J. Chem. Phys., 2006, 125: art. no. 024303
[74] Bona Dc i Dc' -Kouteck Dy' V, Mitri Dc' R. Chem. Rev., 2005, 105: 11-66
[75] Granucci G, Persico M, Toniolo A. J. Chem. Phys., 2011, 114: 10608-10615
[76] Cattaneo P, Persico M, J. Am. Chem. Soc., 2001, 123: 7638-7645
[77] Toniolo A, Granucci G, Inglese S, Persico . Phys. Chem. Chem. Phys., 2001, 3: 4266-4279
[78] Granucci G, Persico M. Photochemistry in condensed phase, in Continuum Solvation Models in Chemical Physics: from Theory to Applications (Eds. by Cammi R, Mennucci B). Wiley, 2007
[79] Fabiano E, Lan Z, Lu Y, Thiel W. Conical Intersections: Theory, Computation and Experiment (Eds. by Yarkony D R, Koeppel H, Domcke W.) Singapore: World Scientific, 2011
[80] Fabiano E, Keal T W, Thiel W. Chem. Phys., 2008, 349: 334-347
[81] Lan Z, Fabiano E, Thiel W. J. Phys. Chem. B, 2009, 113: 3548-3555
[82] Lan Z, Fabiano E, Thiel W. ChemPhysChem., 2009 10: 1225-1229
[83] Lan Z, Lu Y, Fabiano E, Thiel W. ChemPhysChem, 2011, 12: 1989-1998
[84] Lu Y, Lan Z, Thiel W. Angewandte Chemie International Edition, 2011, 50: 6864-6867
[85] Weingart O, Lan Z, Koslowski A, Thiel W. J. Phys. Chem. Lett., 2011, 2, 1506-1509
[86] Kazaryan A, Lan Z, Schäfer L, Thiel W and Filatov M. J. Chem. Theory Comput., 2011, 7: 2189-2199
[87] Cui G, Lan Z, Thiel W. J. Am. Chem. Soc., 2012, 134: 1662-1672
[88] Lan Z, Lu Y, Weingart O, Thiel W. J. Phys. Chem. A,doi: 10.1021/jp2117888
[89] Herman M F.J. Chem. Phys., 1984, 81: 754-763
[90] Pechukas P. Phys. Rev., 1969, 181: 174-185
[91] Miller W H, George T. J. Chem. Phys., 1972, 56: 5637-5652
[92] Coker D F, Xiao L. J. Chem. Phys., 1995, 102: 496-510
[93] Jasper A W, Truhlar D G. Conical Intersections: Theory, Computation and Experiment (Eds. by Yarkony D R, Koeppel H, Domcke W.) Singapore: World Scientific, 2011
[94] Tapavicza E, Tavernelli I, Röthlisberger U, Filippi C, Casida M E. J. Chem. Phys., 2008, 129: 124108
[95] Tapavicza E, Tavernelli I, Röthlisberger U, Filippi C, Casida M E. Phys. Rev. Lett., 2007 98: art.no.023001-1
[96] Jasper A W, Stechmann S N, Truhlar D G. J. Chem. Phys., 2002,116: 5424-5431
[97] Granucci G, Persico M. J. Chem. Phys., 2007, 126: art.no.134114
[98] Granucci G, Persico M, Zoccante A. J. Chem. Phys., 2010, 133: art.no.134111
[99] Kube S, Lasser C, Weber M. J. Comp. Phys., 2009, 228: 1947-1962
[100] Osborn T A, Kondratieva M F, Tabisz G C, McQuarrie B R. J Phys. A: Math. Gen., 1999, 32: 4149-4169
[101] Polkovnikov A. Ann. Phys., 2010, 325: 1790-1852
[102] Ando K. Chem. Phys. Lett., 2002, 360: 240-242
[103] Ando K, Santer M. J. Chem. Phys., 2003, 118: 10399-10406
[104] Hanna G, Kapral R. Acc. Chem. Res., 2006, 39: 21-27
[105] Kapral R, Ciccotti G. J. Chem. Phys., 1999, 110: 8919-8929
[106] Nielsen S, Kapral R. Ciccotti G. J. Chem. Phys., 2000, 112: 6543-6553
[107] Sergi A, Kapral R. J. Chem. Phys., 2003, 118: 8566-8575
[108] Horenko I, Salzmann C, Schmidt B, Schütte C. J. Chem. Phys., 2002, 117: 11075-11088
[109] Horenko I, Weiser M, Schmidt B, Schütte C. J. Chem. Phys., 2004, 120: 8913-8923
[110] Martens, C C, Fang J. J. Chem. Phys., 1997, 106: 4918-4930
[1] Yang Zhongzhi. Electronegativity Equalization [J]. Progress in Chemistry, 2012, 24(06): 1038-1049.
[2] Zhang Igor, Ying Xuxin. A New Generation Density Functional XYG3 [J]. Progress in Chemistry, 2012, 24(06): 1023-1037.
[3] Su Peifeng, Wu Wei. Ab Initio Computational Method for Classical Valence Bond Theory [J]. Progress in Chemistry, 2012, 24(06): 1001-1007.
[4] Jiang Hong. The Band Gap Problem: the State of the Art of First-Principles Electronic Band Structure Theory [J]. Progress in Chemistry, 2012, 24(06): 910-927.
[5] Mei Ye, He Xiao, Ji Changge, Zhang Dawei, John Z.H. Zhang. A Fragmentation Approach to Quantum Calculation of Large Molecular Systems [J]. Progress in Chemistry, 2012, 24(06): 1058-1064.
[6] Hua Weijie, Gao Bin, Luo Yi. First-Principle Simulation of Soft X-Ray Spectroscopy [J]. Progress in Chemistry, 2012, 24(06): 964-980.
[7] Zheng Xiao, Xu Ruixue, Xu Jian, Jin Jinshuang, Hu Jie, Yan Yijing. Hierarchical Equations of Motion for Quantum Dissipation and Quantum Transport [J]. Progress in Chemistry, 2012, 24(06): 1129-1152.
[8] Bu Yuxiang. Structures and Time-Evolution Dynamics of Solvated Electron in Ionic Liquids [J]. Progress in Chemistry, 2012, 24(06): 1094-1104.
[9] Jia Jianfeng, Wu Haishun. Stability Rule of Ⅲ-ⅤPolyhedral Clusters [J]. Progress in Chemistry, 2012, 24(06): 1008-1022.
[10] Fang Decai. Theoretical Studies on the Mechanisms of [2+2] Cycloaddition Reactions [J]. Progress in Chemistry, 2012, 24(06): 879-885.
[11] Lin Chensheng, Cheng Wendan, Zhang Weilong, Zhang Hao, He Zhangzhen. Structural Predications and Photophysical Simulations for Materials [J]. Progress in Chemistry, 2012, 24(06): 1185-1198.
[12] Wu Menghao, Dai Jun, Zeng Xiaocheng. Ab Initio Computation Based Design of Three-Dimensional Structures of Carbon Allotropes [J]. Progress in Chemistry, 2012, 24(06): 1050-1057.
[13] Yuriko Aoki, Feng Long Gu. Elongation Method for Delocalized Nano-wires [J]. Progress in Chemistry, 2012, 24(06): 886-909.
[14] Enrico Clementi, Giorgina Corongiu(author);Shuai Zhigang;Ma Zhongyun;Zhang Tian;Shang Yuan(translator). With Computers from Atoms to Macromolecular Systems [J]. Progress in Chemistry, 2011, 23(9): 1795-1830.
[15] Zheng Yansheng, Zhuo Zhihao, Mo Qian, Li Junsheng. Molecular Simulation and Quantum Chemistry Calculation of Ionic Liquids [J]. Progress in Chemistry, 2011, 23(9): 1862-1870.