中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 1094-1104 Previous Articles   Next Articles

• Special Issue of Quantum Chemistry •

Structures and Time-Evolution Dynamics of Solvated Electron in Ionic Liquids

Bu Yuxiang   

  1. Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
  • Received: Revised: Online: Published:
PDF ( 1610 ) Cited
Export

EndNote

Ris

BibTeX

Structures, states and time-evolution dynamics of excess electron in ionic liquid medium are surveyed. On the basis of the ab initio calculations and molecular dynamics simulations, we discussed the solvation energetics, structural characters, possible existing states and state-to-state conversion mechanisms associated with solvation of excess electron in the imidazolium-type, the pyridinium-type, and the quaternary ammonium-type chloride room temperature ionic liquids, and a representative alkali-metal halide molten salt, and analyzed the nature of efficient conduction of electrons in such media and the important role of constituent ions of the ionic liquids. The conduction band structure consisted of the lowest unoccupied molecular orbital of the cations is a decisive factor in determining the solvated states and stability of the excess electron in ionic liquids, and any factors which affect or change the conduction band structure do considerably affect solvation of excess electron in ionic liquids. However, the rapid state-to-state conversion dynamics and electron migration do not sensitively depend on the diffusion dynamics of the constituent ions, but are controlled by ionic liquid fluctuation. This kind of solvated-electron-based electron migration mechanism provides a new electron transfer pathway in such ionic media or other liquid media. Contents
1 Introduction
2 Computation and molecular dynamics simulation methods
3 Electronic structure of ionic liquids
4 Presolvation state of excess electron
5 Time-evolution dynamics of solvated electron
6 Structures and properties of solvated electron
7 Conclusions and outlook

CLC Number: 

[1] Weyl W. Ann. Phys., 1864, 121: 606-612
[2] Hart E J, Boag J W. J. Am. Chem. Soc., 1962, 84: 4090-4095
[3] Kevan L. Acc. Chem. Res., 1981, 14: 138-145
[4] Klug D D. Science, 2001, 294: 2305-2306
[5] Jordan K D. Science, 2004, 306: 618-619
[6] Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M. Science, 2004, 306: 669-671
[7] Paik D H, Lee I, Yang D, Baskin J S, Zewail A H. Science, 2004, 306: 672-675
[8] Hammer N I, Shin J, Headrick J M, Diken E G, Roscioli J R, Weddle G H, Johnson M A. Science, 2004, 306: 675-679
[9] Verlet J R R, Bragg A E, Kammrath A, Cheshnovsky O, Neumark D M. Science, 2005, 307: 93-96
[10] Turi L, Sheu W S, Rossky P J. Science, 2005, 309: 914-917
[11] Onda K, Li B, Zhao J, Jordan K D, Yang J, Petek H. Science, 2005, 308: 1154-1158
[12] Bragg A E, Cavanagh M C, Schwartz B J. Science, 2008, 321: 1817-1822
[13] Simon S H. Science, 2009, 324: 1022-1023
[14] Jordan K D, Johnson M A. Science, 2010, 329: 42-43
[15] Larsen R E, Glover W J, Schwartz B J. Science, 2010, 329: 65-69
[16] Siefermann K R, Liu Y, Lugovoy E, Link O, Faubel M, Buck U, Winter B, Abel B. Nat. Chem., 2010, 2: 274-279
[17] Nilsson A. Nat. Chem., 2010, 2: 800-802
[18] Herbert J M, Head-Gordon M. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 14282-14287
[19] Jordan K D, Wang F. Annu. Rev. Phys. Chem., 2003, 54: 367-396
[20] Nordlund D, Ogasawara H, Bluhm H, Takahashi O, Odelius M, Nagasono M, Pettersson L G M, Nilsson A. Phys. Rev. Lett., 2007, 99: art. no. 217406
[21] Zhao J, Li B, Onda K, Feng M, Petek H. Chem. Rev., 2006, 106: 4402-4427
[22] Ehrler O T, Neumark D M. Acc. Chem. Res., 2009, 42: 769-777
[23] Bu Y X. J. Shandong Univ. (Natural Science), 2011, 46(10): 152-159
[24] Sagar D M, Bain C D, Verlet J R R. J. Am. Chem. Soc., 2010, 132: 6917-6919
[25] Marsalek O, Uhlig F, Frigato T, Schmidt B, Jungwirth P. Phys. Rev. Lett., 2010, 105: art. no. 043002
[26] Chiesa M, Giamello E, Van Doorslaer S. J. Am. Chem. Soc., 2009, 131: 12664-12670
[27] Garrett B C, Dixon D A, Camaioni D M, et al. Chem. Rev., 2005, 105: 355-389
[28] Huels M A, Boudaffa B, Cloutier P, Hunting D, Sanche L. J. Am. Chem. Soc., 2003, 125: 4467-4477
[29] Herbert J M, Head-Gordon M. J. Am. Chem. Soc., 2006, 128: 13932-13939
[30] Glover W J, Larsen R E, Schwartz B J. J. Phys. Chem. Lett., 2009, 1: 165-169
[31] Koaski M, Lee H M, Pak C, Kim K S. J. Am. Chem. Soc., 2007, 130: 103-112
[32] Donald W A, Demireva M, Leib R D, Aiken M J, Williams E R. J. Am. Chem. Soc., 2010, 132: 4633-4640
[33] Baletto F, Cavazzoni C, Scandolo S. Phys. Rev. Lett., 2005, 95: art. no. 176801
[34] Zappa F, Denifl S, Mhr I, Bacher A, Echt O, Mrk T D, Scheier P. J. Am. Chem. Soc., 2008, 130: 5573-5578
[35] Sobhy M A, Casalenuovo K, Reveles J U, Gupta U, Khanna S N, Castleman A W. J. Phys. Chem. A, 2010, 114: 11353-11363
[36] Zurek E, Edwards P P, Hoffmann R. Angew. Chem. Int. Ed., 2009, 48: 8198-8232
[37] Muroya Y, Lin M Z, de Waele V, Hatano Y, Katsumura Y, Mostafavi M. J. Phys. Chem. Lett., 2010, 1: 331-335
[38] Jacobson L D, Herbert J M J. Am. Chem. Soc., 2010, 132: 10000-10002
[39] Prell J S, O'Brien J T, Holm A I S, Leib R D, Donald W A, Williams E R. J. Am. Chem. Soc., 2008, 130: 12680-12689
[40] Turecek F, Chen X H, Hao C T. J. Am. Chem. Soc., 2008, 130: 8818-8833
[41] Turecek F, Jones J W, Towle T, Panja S, Nielsen S B, Hvelplund P, Paizs B. J. Am. Chem. Soc., 2008, 130: 14584-14596
[42] Turecek F, Chung T W, Moss C L, Wyer J A, Ehlerding A, Holm A I S, Zettergren H, Nielsen S B, Hvelplund P, Chamot-Rooke J, Bythell B, la Paizs B. J. Am. Chem. Soc., 2010, 132: 10728-10740
[43] Simons J. J. Am. Chem. Soc., 2010, 132: 7074-7085
[44] Pan X, Cloutier P, Hunting D, Sanche L. Phys. Rev. Lett., 2003, 90: art. no. 208102
[45] Yan S H, Bu Y X, Cukier R I. J. Chem. Phys., 2006, 124: art. no. 124314
[46] Zhang L, Yan S H, Cukier R I, Bu Y X. J. Phys. Chem. B, 2008, 112: 3767-3772
[47] Wang Z P, Zhang L, Chen X H, Cukier R I, Bu Y X. J. Phys. Chem. B (Letters), 2009, 113: 8222-8226
[48] Wang Z P, Zhang L, Cukier R I, Bu Y X. PhysChemChemPhys, 2010, 12: 1854-1861
[49] Bu Y X. Frontiers of Chemistry in China, 2010, 5(3): 309-324
[50] Dye J L. Acc. Chem. Res., 2009, 42: 1564-1572
[51] Matsuishi S, Toda Y, Masashi M, Katsuro H, Toshio K, Hirano M, Tanaka I, Hosono H. Science, 2003, 301: 626-629
[52] Huang R H, Faber M K, Moeggenborg K J, Ward D L, Dye J L. Nature, 1988, 331: 599-601
[53] Singh D J, Krakauer H, Haas C, Pickett W E. Nature, 1993, 365: 39-42
[54] Miyakawa M, Kim S W, Hirano M, Kohama Y, Kawaji H, Atake T, Ikegami H, Kono K, Hosono H. J. Am. Chem. Soc., 2007, 129: 7270-7271
[55] Muhammad S, Xu H L, Liao Y, Kan Y H, Su Z M. J. Am. Chem. Soc., 2009, 131: 11833-11840
[56] Chen W, Li Z R, Wu D, Li Y, Sun C C, Gu F L. J. Am. Chem. Soc., 2005, 127: 10977-10981
[57] Xu H L, Li Z R, Wu D, Wang B Q, Li Y, Gu F L, Aoki Y. J. Am. Chem. Soc., 2007, 129: 2967-2970
[58] Chen W, Li Z R, Wu D, Li Y, Sun C C, Gu F L, Aoki Y. J. Am. Chem. Soc., 2006, 128: 1072-1073
[59] Buzzeo M C, Evans R G, Compton R G. ChemPhysChem, 2004, 5(8): 1106-1120
[60] Baker G A, Baker S N, Pandey S, Bright F V. Analyst, 2005, 130(6): 800-808
[61] Cocalia V A, Gutowski K E, Rogers R D. Coord. Chem. Rev., 2006, 250: 755-764
[62] Dietz M L. Sep. Sci. Technol., 2006, 41(10): 2047-2063
[63] Jensen M P, Neuefeind J, Beitz J V, Skanthakumar S, Soderholm L. J. Am. Chem. Soc., 2003, 125(50): 15466-15473
[64] Nikitenko S I, Cannes C, Le Naour C, Moisy P, Trubert D. Inorg. Chem., 2005, 44(25): 9497-9505
[65] Visser A E, Jensen M P, Laszak I, Nash K L, Choppin G R, Rogers R D. Inorg. Chem., 2003, 42(7): 2197-2199
[66] Mazille F, Fei Z, Kuang D, Zhao D, Zakeeruddin S, Grtzel M M, Dyson P J. Inorg. Chem., 2006, 45(4): 1585-1590
[67] Wang P, Zakeeruddin S M, Moser J E, Grtzel M. J. Phys. Chem. B, 2003, 107(48): 13280-13285
[68] Grtzel M. Nature, 2001, 414(6861): 338-344
[69] Hagfeldt A, Grtzel M. Acc. Chem. Res., 2000, 33(5): 269-277
[70] Yamanaka N, Kawano R, Kubo W, Masaki N, Kitamura T, Wada Y, Watanabe M, Yanagida S. J. Phys. Chem. B, 2007, 111(18): 4763-4769
[71] Fumino K, Wulf A, Ludwig R. Angew. Chem. Int. Ed., 2008, 47(20): 3830-3834
[72] Jones C B, Haiges R, Schroer T, Christe K O. Angew. Chem. Int. Ed., 2006, 45(30): 4981-4984
[73] Shim Y, Jeong D, Manjari S, Choi M Y, Kim H J. Acc. Chem. Res., 2007, 40(11): 1130-1137
[74] Lockard J V, Wasielewski M R. J. Phys. Chem. B, 2007, 111(40): 11638-11641
[75] Katoh R, Yoshida Y, Katsumura Y, Takahashi K. J. Phys. Chem. B, 2007, 111(18): 4770-4774
[76] Mele A, Romano G, Giannone M, Ragg E, Fronza G, Raos G, Marcon V. Angew. Chem. Int. Ed., 2006, 45(7): 1123-1126
[77] Weingaertner H. Angew. Chem. Int. Ed., 2008, 47(4): 654-670
[78] Vieira R C, Falvey D E. J. Am. Chem. Soc., 2008, 130(5): 1552-1553
[79] Vieira R C, Falvey D E. J. Phys. Chem. B, 2007, 111(18): 5023-5029
[80] Wishart J F, Neta P. J. Phys. Chem. B, 2003, 107(30): 7261-7267
[81] Shkrob I A, Wishart J F. J. Phys. Chem. B, 2009, 113(16): 5582-5592
[82] Margulis C J, Annapureddy H V R, De Biase P M, Coker D, Kohanoff J, Del Pópolo M G. J. Am. Chem. Soc., 2011, 133(50): 20186-20193
[83] Boero M, Parrinello M, Terakura K, Ikeshoji T, Liew C C. Phys. Rev. Lett., 2003, 90(22): 226403-226406
[84] Skurski P, Rak J, Simons J, Gutowski M. J. Am. Chem. Soc., 2001, 123(44): 11073-11074
[85] Sommerfeld T, Jordan K D. J. Am. Chem. Soc., 2006, 128(17): 5828-5833
[86] Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M. J. Am. Chem. Soc., 2005, 127(43): 15283-15295
[87] Tauber M J, Stuart C M, Mathies R A. J. Am. Chem. Soc., 2004, 126(11): 3414-3415
[88] Tauber M J, Mathies R A. J. Am. Chem. Soc., 2003, 125(5): 1394-1402
[89] Chandler D, Leung K. Annu. Rev. Phys. Chem., 1994, 45: 557-591
[90] Zhu J, Cukier R I. J. Chem. Phys., 1993, 99(7): 5384-5395
[91] Lee S, Kim J, Lee S J, Kim K S. Phys. Rev. Lett., 1997, 79(11): 2038-2041
[92] Selloni A, Car R, Parrinello M, Carnevali P. J. Phys. Chem., 1987, 91(19): 4947-4949
[93] Leone A M, Weatherly S C, Williams M E, Thorp H H, Murray R W. J. Am. Chem. Soc., 2001, 123(2): 218-222
[94] Xia P, Bloomfield L A. Phys. Rev. Lett., 1993, 70(12): 1779-1782
[95] Turi L, Madarasz A. Science, 2011, 331: 1387-c
[96] Jacobson L, Herbert J M. Science, 2011, 331: 1387-d
[97] Larsen R E, Glover W J, Schwartz B J. Science, 2011, 331: 1387-e
[98] DMol3 package as implemented in Cerius 2/Materials Studio version 4.6. Accelrys Inc., San Diego, CA, 2008
[99] CP2K Developers Group Homepage. . http: //cp2k. berlios. de/ (2004)
[100] CPMD. . http: //www. cpmd. org/, copyright IBM Corp. 1990-2008, copyright MPI für Festkrperforschung Stuttgart 1997-2001
[1] Fengguo Liu, Bo Wang, Lianyu Zhang, Aimin Liu, Zhaowen Wang, Zhongning Shi. Application of Ionic Liquids in Aluminum and Alloy Electrodeposition [J]. Progress in Chemistry, 2020, 32(12): 2004-2012.
[2] Guobin Tong, Lei E, Zhou Xu, Chunhui Ma, Wei Li, Shouxin Liu. Preparation, Modification and Application of Carbon Materials Based on Ionic Liquids [J]. Progress in Chemistry, 2019, 31(8): 1136-1147.
[3] Zhiyong Li, Ying Feng, Huiyong Wang, Xiaoqing Yuan, Yuling Zhao, Jianji Wang. Structure and Performance Modulation of Photo-Responsive Ionic Liquids [J]. Progress in Chemistry, 2019, 31(11): 1550-1559.
[4] Wenqiao Liu, Zhen Li, Chungu Xia. Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials [J]. Progress in Chemistry, 2018, 30(8): 1143-1160.
[5] Haidong Cheng, Shuangjun Chen*. Degradation and Synthesis of Poly (Ethylene Terephthalate) by Functionalized Ionic Liquids [J]. Progress in Chemistry, 2017, 29(4): 443-449.
[6] Song Heyuan, Kang Meirong, Jin Ronghua, Jin Fuxiang, Chen Jing. Application of Ionic Liquids to the Carbonylation Reactions [J]. Progress in Chemistry, 2016, 28(9): 1313-1327.
[7] Yang Xuzhao, Wang Jun, Fang Yun. Synthesis, Properties and Applications of Dicationic Ionic Liquids [J]. Progress in Chemistry, 2016, 28(2/3): 269-283.
[8] Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye. Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis [J]. Progress in Chemistry, 2015, 27(1): 27-37.
[9] Li Qingchuan, Cao Lixin, Hu Haifeng, Wang Kai, Yan Peisheng. Electrochemical Biosensors for Aflatoxin Analysis [J]. Progress in Chemistry, 2014, 26(04): 657-664.
[10] Lai Qingxue, Zhang Xiaogang, Liang Yanyu. Synthesis and Application of Nitrogen-Containing Carbon Nanomaterials by Ionic Liquids as Novel Precursors [J]. Progress in Chemistry, 2013, 25(10): 1703-1712.
[11] You Hongxing, Wang Yongyong, Wang Xuezhu, Liu Ye. Syntheses and Catalytic Applications of the Transition Metal Complex-Functionalized Ionic Liquids [J]. Progress in Chemistry, 2013, 25(10): 1656-1666.
[12] Liu Shuo, Ying Anguo, Ni Yuxiang, Yang Jianguo, Xu Songlin. Application of Task-Specific Ionic Liquids to Michael Additions [J]. Progress in Chemistry, 2013, 25(08): 1313-1324.
[13] Zhang Yingying, Lu Xiaohua*, Feng Xin, Shi Yijun, Ji Xiaoyan. Properties and Applications of Choline-Based Deep Eutectic Solvents [J]. Progress in Chemistry, 2013, 25(06): 881-892.
[14] Li Man, Yang Lei, Han Feng, Chen Jing*, Xia Chungu. Task-Specific Ionic Liquids Catalyzed Carbon-Heteroatom Bond Formation Reactions [J]. Progress in Chemistry, 2013, 25(06): 940-960.
[15] Chen Xuwei, Mao Quanxing, Wang Jianhua*. Ionic Liquids in Extraction/Separation of Proteins [J]. Progress in Chemistry, 2013, 25(05): 661-668.