中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 1050-1057 Previous Articles   Next Articles

Special Issue: 计算化学

• Special Issue of Quantum Chemistry •

Ab Initio Computation Based Design of Three-Dimensional Structures of Carbon Allotropes

Wu Menghao, Dai Jun, Zeng Xiaocheng   

  1. Department of Chemistry and Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
  • Received: Revised: Online: Published:
PDF ( 1319 ) Cited
Export

EndNote

Ris

BibTeX

Carbon can exist in many different forms at different temperatures and pressures. Some allotropes of carbon have been predicted in theory but still have not been found in nature. In this article, we mainly overview a number of three-dimensional (3D) crystalline carbon allotropes, predicted by ab initio calculations. Particular attention will be placed on the carbon foams, which possess porous structures with a large surface area. Carbon foams are mostly composed of graphite segments connected by different types of carbon bonds. We will also review 3D carbon superstructures of low-dimensional allotropes, typically built from carbon fullerenes, nanobuds, nanotubes and graphene nanoribbons, as well as various other 3D crystalline carbon structures. Some of these carbon superstructures are composed of mixed sp-sp2 carbon or pure sp2 carbon (e.g., H-6, bct-4, C-20, K4), and some have larger mass density than diamond (C8, hP3, tl12, tp12), and some can be transformed from graphite at room temperature and high pressure (e.g., M carbon, bct-4 carbon, W carbon, Z carbon). Some of these theoretically predicted carbon allotropes may be synthesized in the laboratory in future.

CLC Number: 

[1] Hirsch A. Nat. Maters., 2010, 9: 868-871
[2] Rode A V, Gamaly E G, Luther-Davies B. Appl. Phys. A 2000, 70: 135-144
[3] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. Nature, 1985,318(6042): 162-163
[4] Iijima S. Nature, 1991,354(6348): 56-58
[5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004,306(5696): 666-669
[6] Guldi D M, IIIescas B M, Atienza C M, Wielopolski M, Martin N. Chem. Soc. Rev., 2009, 38: 1587-1597
[7] Neto A H C, Guinea F, Peres N M R, Novoselov K S, Geim A K. Rev. Mod. Phys.,2009, 81: 109-162
[8] Coleman J N, Khan U, Blau W J, Gunko Y K. Carbon, 2006, 44(9): 1624-1652
[9] http: //www. kentchemistry. com/links/bonding/network. htm
[10] http: //worldscheaper. com/diamond-structure. html/diamond-crystal-structure
[11] http: //en. wikipedia. org/wiki/Lonsdaleite
[12] Pan Z, Sun H, Zhang Y, Chen C. Physical Review Letters, 2009, 102(5): art. no. 055503
[13] Karfunkel H R, Dressler T. J. Am. Chem. Soc., 1992, 114: 2285-2288
[14] Balaban A T, Klein D J, Folden C A. Chem. Phys. Lett., 1994, 217: 266-270
[15] Rode A V, Gamaly E G, Luther-Davies B. Appl. Phys. A, 2000, 70: 135-144
[16] Park N, Ihm J. Phys. Rev. B, 2000, 62: 7614-7618
[17] Umemoto K, Saito S, Berber S, Tomanek D. Phys. Rev. B, 2000, 64: art. no. 193409
[18] Ribeiro F J, Tangney P, Louie S G, Cohen M L. Phys. Rev. B, 2005, 72: art. no. 214109
[19] Kuc A, Seifert G. Phys. Rev. B, 2006, 74: art. no. 214104
[20] Klett J W, McMillan A D, Gallego N C, Walls C A. J. Mater. Sci.,2004, 39: 3659-3676
[21] Klett J, Hardy R, Romine E, Walls C, Burchell T. Carbon, 2000, 38: 953-973
[22] Park N, Hong S, Kim G, Jhi S H. J. Am. Chem. Soc., 2007, 129: 8999-9003
[23] Wu M, Wu X, Pei Y, Wang Y, Zeng X C. Chem. Commun., 2011, 47: 4406-4408
[24] Wu X, Zeng X C. Nano Lett., 2009, 9(1): 250-256
[25] Kuc A, Zhechkov L, Patchkovskii S, Seifert G, Heine T. Nano Lett., 2007, 7(1): 1-5
[26] Dimitrakakis G K, Tylianakis E, Froudakis G E. Nano Lett., 2008, 8(10): 3166-3170
[27] Wei D, Liu Y. Adv. Mater., 2008, 20: 2815-2841
[28] Ismach A, Kantorovich D, Joselevich E. J. Am. Chem. Soc., 2005, 127: 11554-11555
[29] Terrones M, Terrones H, Banhart F, Charlier J C, Ajayan P M. Science, 2000, 288: 1226-1229
[30] Terrones M, Banhart F, Grobert N, Charlier J C, Terrones H, Ajayan P M. Phys. Rev. Lett., 2002, 89: art. no. 075505
[31] Krasheninnikov A V, Nordlund K, Keinonen J, Bahhart F. Nucl. Instrum. Meth. Phys. Res. B, 2003, 202: 224-229
[32] Jin C H, Suenaga K, Iijima S. Nat. Nano., 2008, 3: 17-21
[33] Romo-Herrera J M, Terrones M, Terrones H, Dag S, Meunier V. Nano Lett. 2007, 7: 570-576
[34] Romo-Herrera J M, Terrones M, Terrones H, Meunier V. ACS Nano, 2008, 2: 2585-2591
[35] Romo-Herrera J M, Terrones M, Terrones H, Meunier V. Nanotechnology, 2008, 19: art. no. 315704
[36] Zhou R, Liu R, Li L, Wu X, Zeng X C. J. Phys. Chem. C, 2011, 115: 18174-18185
[37] Ivanovskaya V V, Ivanovskii A L. J. Superhard Mat., 2010, 32: 67-87
[38] Baughman R H, Galvao D S. Nature, 1993, 365: 735-737
[39] Liu A Y, Cohen M L, Hass K C, Tamor M A. Phys. Rev. B, 1991, 43: 6742-6745
[40] Liu A Y, Cohen M L. Phys. Rev. B, 1992, 45: 4579-4581
[41] Cté M, Grossman J C, Cohen M L, Louie S G. Phys. Rev. B, 1998, 58: 664-668
[42] Sunada T. Not. Am. Math. Soc.,2008, 55: 208-215
[43] Itoh M, Kotani M,Naito H, Sunada T, Kawazoe Y, Adschiri T. Phys. Rev. Lett., 2009,102: art. no. 055703
[44] Yao Y, Tse J S, Sun J, Klug D D, Martonak R, Iitaka T. Phys. Rev. Lett. 2009,102: art. no. 229601
[45] Rignanese G M, Charlier J C. Phys. Rev. B 2008, 78: art. no. 125415
[46] Hoffmann R T, Hughbanks T, Kertesz M, Bird P H. J. Am. Chem. Soc.,1983, 105: 4831-4832
[47] Zhu Q, Oganov A, Salvadó M, Pertierra P, Lyakhov A. Phys. Rev. B, 2011, 83 (19): art. no. 193410
[48] Utsumi W, Yagi T, Science, 1991,252: 1542-1544
[49] Hanfland M, Syassen K, Sonnenschein R. Phys. Rev. B, 1989, 40: 1951-1954
[50] Yagi T, Utsumi W, Yamakata M A, Kikegawa T, Shimomura O. Phys. Rev. B, 1992, 46: 6031-6039
[51] Takano K J, Harashima H, Wakatsuki M. Jpn. J. Appl. Phys., 1991, 30: L860-L863
[52] Zhao Y X, Spain I L. Phys. Rev. B, 1989, 40: 993-997
[53] Li Q, Ma Y, Oganov A R, Wang H, Wang H, Xu Y, Cui T, Mao H, Zou G. Phys. Rev. Lett.,2009,102: art. no. 175506
[54] Umemoto K, Wentzcovitch R M, Saito S, Miyake T. Phys. Rev. Lett., 2010, art. no. 104: 125504
[55] Zhou X, Qian G, Dong X, Zhang L, Tian Y, Wang H. Phys. Rev. B, 2010, 82: art. no. 134126
[56] Wang J, Chen C, Kawazoe Y. Phys. Rev. Lett. 2011: 106: art. no. 075501
[57] Amsler M, Flores-Livas J A, Lehtovaara L, Balima F, Ghasemi S A, Machon D, Pailhs S, Willand A, Caliste D, Botti S, Miguel A S, Goedecker S, Marques M A L. Phys. Rev. Lett., 2012, 108: art. no. 065501
[58] Correa A, Bonev S, Galli G. Proc. Natl. Acad. Sci. USA, 2006, 103 (5): 1204-1208
[59] Sheng X, Yan Q, Ye F, Zheng Q, Su G. Phys. Rev. Lett., 2011, 106: art. no. 155703
[60] Winkler B, Pickard C J, Milman V, Thimm G. Chem. Phys. Lett., 2001, 37: 36-42
[1] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[2] Bu Fanxing, Du Chenjie, Jiang Jisen. Synthesis, Properties and Applications of Mesocrystals [J]. Progress in Chemistry, 2014, 26(01): 75-86.
[3] Zhang Jinchao*, Yang Kangning, Zhang Haisong, Liang Xingjie*. Application Status and Prospect of Carbon-Based Nanomaterials in Biomedical Field [J]. Progress in Chemistry, 2013, 25(0203): 397-408.
[4] Hu Shengliang Bai Peikang Sun Jing Cao Shirui. Fluorescent Carbon Nanoparticles: Recent Achievements and Technical Challenges [J]. Progress in Chemistry, 2010, 22(0203): 345-351.
[5] Jia Jianbo**. Application of Carbon-Based Thin-Film Electrode Materials in Electroanalytical Chemistry [J]. Progress in Chemistry, 2007, 19(11): 1800-1805.
[6] . Electrochemistry of Diamond Thin Film [J]. Progress in Chemistry, 2005, 17(01): 55-64.
[7] Xu Kang,Xue Qunji. Nanometer-Sized Diamond Powders Synthesized by Explosive Detonation [J]. Progress in Chemistry, 1997, 9(02): 201-.