中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 1038-1049 Previous Articles   Next Articles

• Special Issue of Quantum Chemistry •

Electronegativity Equalization

Yang Zhongzhi   

  1. College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
  • Received: Revised: Online: Published:
PDF ( 1580 ) Cited
Export

EndNote

Ris

BibTeX

Electronegativity is the power of an atom attracting electron to itself in a molecule. It is a basic concept in chemistry. Pauling proposed the first electronegativity scale and after then many electronegativity scales were proposed. It is only on the basis of density functional theory that the concept and electronegativity principle were precisely proved theoretically. In recent decades, there have been some important developments of the electronegativity theory. Applying the electronegativity equalization model or method, one can rapidly calculate the charge distribution of a large molecule and then calculate the related properties, even molecular structure and reactivity indexes. The usual electronegativity equalization method divides a molecule only to atomic regions its accuracy and application are limited although it is simple and intuitive. Atom-bond electronegativity equalization method divides a molecule into not only atomic regions but also bond and lone-pair regions so that it can rapidly and accurately calculate molecular charge distribution and other properties, and recently it is also applied to develop a new generation of polarizable force field. Contents
1 Introduction
2 Electronegativity
2.1 Classical electronegativity scales
2.2 Modern electronegativity ideas
3 Electronegativity in density functional theory and related physical quantities
3.1 The first-order derivatives: chemical potential μ and electron density ρ
3.2 The second-order derivatives: global hardness, local hardness and local softness, fukui function
3.3 Electronegativity equalization principle
4 Modern electronegativity equalization method (EEM)
4.1 Mortier electronegativity equalization method (EEM)
4.2 Atom-bond electronegativity equalization method (ABEEM)
5 Conclusion

CLC Number: 

[1] Pauling L. J. Am. Chem. Soc., 1932, 54: 3570-3582; Pauling L. The Nature of the Chemical bond, 3rd ed. Ithaca and NY: Cornell University Press, 1960
[2] Mulliken R S. J. Chem. Phys., 1934, 2: 782-793
[3] Allred A L, Rochow E G, J. Inorg. Nucl. Chem., 1958, 5: 264-268
[4] Sanderson R T. J. Chem. Educ., 1952, 29: 539-544; 1954, 31: 238-245
[5] Sanderson R T. Science, 1951, 114: 670-672
[6] Sanderson R T. Polar Covalence, New York: Academic Press, 1983; Chemical Bonds and Bond Energy, NY: Academic Press, 1976
[7] Sen K D, Jørgensen C K. Electronegativity-Structure and Bonding 66. Berlin Heidelberg & New York, Springer-Verlag, 1987
[8] Bergmann D, Hinze J. Angew. Chem. Int. Ed. Engl. 1996, 35: 150-163
[9] 杨频(Yang P). 分子结构参量及其与物性关联规律(Molecular Structure Parameter and Its Correlation Regularity with Properties), 北京, 科学出版社(Beijing: Science Press), 2007
[10] Parr R G, Donnelly R A, Levy N, Palke W E. J. Chem. Phys., 1978, 68: 3801-3807
[11] Parr R G, Yang W T. Density-Functional Theory of Atoms and Molecules, New York: Oxford University press, 1989
[12] Gerrlings P, De Proft F, Langenaeker W. Chem. Rev., 2003, 103: 1793-1873
[13] Hinze, J. Fortschr. Chem. Forsch, 1968, 93: 448-482
[14] Huheey J E. Inorganic Chemistry, New York: Harper & Row, 1978
[15] Slater J. Phys. Rev., 1929, 34: 1293-1322
[16] Condon E U, Shortley G H. The Theory of Atomic Spectra, Cambridge: Cambridge University Press, 1953
[17] Vleck J H V. J. Chem. Phys., 1934, 2: 20-31
[18] Moffitt W. Rep. Prog. Phys., 1954, 17: 173-200
[19] Companion A L, Ellison F O. J. Chem. Phys., 1958, 28: 1-9
[20] Walsh A D. Discuss. Faraday Soc. 1947, 2: 1-24
[21] Hotop H, Lineberger W C. J. Phys. Chem. Ref. Data, 1975, 4: 539-577
[22] Gordy W. Phys. Rev., 1946, 69: 604-607
[23] Iczkowski R P, Margrave J L. J. Am. Chem. Soc., 1961, 83: 3547-3551
[24] Huheey J E. J. Phys. Chem., 1965, 69: 3284-3291
[25] Huheey J E. J. Phys. Chem., 1966, 70: 2086-2092
[26] Bratsch S G. J. Chem. Educ., 1985, 62: 101-103
[27] Mullay J. J. Am. Chem. Soc., 1984, 106: 5842-5847
[28] Hinze J, Jaffé H H. J. Am. Chem. Soc., 1962, 84: 540-546
[29] Hinze J, Whitehead M A, Jaffé H H. J. Am. Chem. Soc., 1963, 85: 148-154
[30] Hinze J, Jaffé H H. Can. J. Chem., 1963, 41: 1315-1328
[31] Hinze J, Jaffé H H. J. Phys. Chem., 1963, 67: 1501-1506
[32] Pritchard H O. J. Am. Chem. Soc., 1963, 85: 1876-1876
[33] Politzer P, Weinstein H. J. Chem. Phys., 1979, 71: 4218-4220
[34] Pearson R G. J. Am. Chem. Soc., 1963, 85: 3533-3539
[35] Parr P G, Pearson R G. J. Am. Chem. Soc., 193, 105: 7512-7516
[36] Mortier W J, Ghosh S K, Shankar S. J. Am. Chem. Soc., 1986, 108: 4315-4320
[37] Mortier W J, Genechten K V, Gasteiger J. J. Am. Chem. Soc., 1985, 107: 829-835
[38] Nalewajski R F. J. Am. Chem. Soc., 1984, 106: 944-945
[39] Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Waroquier M, Tollenaere J P. J. Phys. Chem. A, 2002, 106: 7887-7894
[40] Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Waroquier M, Tollenaere J P. J. Phys. Chem. A, 2002, 106: 7895-7901
[41] Rappé A K, Goddard W A. J. Phys. Chem., 1991, 95: 3358-3363
[42] Darrin M. Y., Yang W. J. Chem. Phys., 1996, 104: 159-172
[43] Smirnov K S, van de Graaf B. J. Chem. Soc. Faraday Trans., 1996, 92: 2469-2474
[44] Chelli R, Procacci P. J. Chem. Phys., 2002, 117: 9175-9189
[45] Yang Z Z, Shen E Z. J. Mol. Struct. (Theochem), 1994, 312: 167-173
[46] 杨忠志(Yang Z Z), 沈尔忠(Shen E Z). 中国科学(B辑)(Scientia Sinica Chimica), 1995, 25: 1233-1239
[47] Yang Z Z, Wang C S. J. Phys. Chem. A, 1997, 101: 6315-6321
[48] Wang C S, Yang Z Z. J. Chem. Phys., 1999, 110: 6189-6197
[49] Yang Z Z, Wang C S, Tang A Q. Science in China (Ser. B), 1998, 41: 331-336
[50] Wang C S, Zhao D X, Yang Z Z. Chem. Phys. Lett., 2000, 330: 132-138
[51] Cong Y, Yang Z Z. Chem. Phys. Lett., 2000, 316: 324-329
[52] Cong Y, Yang Z Z, Wang C S, Liu X C, Bao X H. Chem. Phys. Lett., 2002, 357: 59-64
[53] Yang Z Z, Wang C S. J. Theor. Comput. Chem., 2003, 2: 273-299
[54] Yang Z Z, Cui B Q, J. Chem. Theory Comput., 2007, 3: 1561-1568
[55] Yang Z Z, Wu Y, Zhao D X. J. Chem. Phys., 2004, 120: 2541-2557
[56] Wu Y, Yang Z Z. J. Phys. Chem. A, 2004, 108: 7563-7576
[57] 钱萍(Qian P), 杨忠志(Yang Z Z). 中国科学B辑(Scientia Sinica Chimica), 2006, 36(4): 284-298
[58] Yang Z Z, Li X. J. Phys. Chem. A (Letters), 2005, 109: 3517-3520
[59] Li X, Yang Z Z. J. Chem. Phys., 2005, 122: 084514
[60] Li X, Yang Z Z. J. Phys. Chem. A, 2005, 109: 4102-4111
[61] Yang Z Z, Zhang Q. J. Comput. Chem., 2006, 27: 1-10
[62] Zhang Q, Yang Z Z. Chem. Phys. Lett., 2005, 403: 242-247
[63] Yang Z Z, Qian P. J. Chem. Phys., 2006, 125: 064311-064316
[64] Wang F F, Zhao D X, Gong L D. Theoretical Chem. Account, 2009, 124: 139-150
[65] Zhao D X, Liu C, Wang F F, Yu C Y, G L D, Liu S B, Yang Z Z. J. Chem. Theory Comput., 2010, 6: 795-804
[66] Chen S L, Zhao D X, Yang Z Z. J. Comput. Chem., 2011, 32: 338-348
[67] Zhao D X, Yu L, Gong L D, Liu C, Yang Z Z. J. Chem. Phys., 2011, 134: artn. no. 194115
[1] Su Peifeng, Wu Wei. Ab Initio Computational Method for Classical Valence Bond Theory [J]. Progress in Chemistry, 2012, 24(06): 1001-1007.
[2] Jiang Hong. The Band Gap Problem: the State of the Art of First-Principles Electronic Band Structure Theory [J]. Progress in Chemistry, 2012, 24(06): 910-927.
[3] Zheng Xiao, Xu Ruixue, Xu Jian, Jin Jinshuang, Hu Jie, Yan Yijing. Hierarchical Equations of Motion for Quantum Dissipation and Quantum Transport [J]. Progress in Chemistry, 2012, 24(06): 1129-1152.
[4] Liu Wenjian**. New Advances in Relativistic Quantum Chemistry [J]. Progress in Chemistry, 2007, 19(06): 833-851.
[5] Zhiwei Li Cunyuan Zhao Liuping Chen . Theoretical Study on Structures and Properties of Aromatic Clusters [J]. Progress in Chemistry, 2006, 18(12): 1599-1607.
[6] Zhang Yang,Yang Jichu,Yu Yangxin,Li Yigui. Molecular Simulation and Its Applications in the Field of Supercritical Fluids [J]. Progress in Chemistry, 2005, 17(06): 955-962.
[7] . Recent Progress of Multiscale Science [J]. Progress in Chemistry, 2005, 17(02): 186-191.
[8] Dai Ying,Li Lemin. Applications of Density Functional Theory to Dealing with Excited States and Multiplets of Molecules [J]. Progress in Chemistry, 2001, 13(03): 167-.
[9] Zhu Weiliang,Jiang Hualiang,Chen Kaixian,Ji Ruyun,Cao Yang. New Advances in Quantum Chemistry Calculation Methods of Biomacromolecular System [J]. Progress in Chemistry, 1999, 11(04): 367-.
Viewed
Full text


Abstract

Electronegativity Equalization