中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 1023-1037 Previous Articles   Next Articles

• Special Issue of Quantum Chemistry •

A New Generation Density Functional XYG3

Zhang Igor, Ying Xuxin   

  1. Department of Chemistry,Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Laboratory for Computational Physical Science,Fudan University,Shanghai 200433,China
  • Received: Revised: Online: Published:
PDF ( 1206 ) Cited
Export

EndNote

Ris

BibTeX

There is growing evidence, showing that the widely-used approximate functionals, such as B3LYP, degrade as the system becomes large, underestimate reaction barrier heights and fail to bind van der Waals systems, etc. The success of the Kohn-Sham implementation of density functional theory (DFT) depends on the quality of the exchange-correlation functional. This paper provides an overview of the recent progress on the construction of a new generation of doubly hybrid density functionals (DHDFs). We pointed out that the theoretical basis of DHDFs lies in Görling-Levy (GL) coupling-constant perturbation theory and adiabatic connection method, and we proposed that the current available DHDFs can be classified into three groups by their different references used to construct the second order perturbation energy. We systematically examined the performance of various DHDFs. Finally, possible directions for future development of DHDFs are forecasted. Contents
1 Overview of modern density functional theory
1.1 Hohenberg-Kohn theory and Kohn-Sham scheme
1.2 Jacob's ladder of approximate DFT methods
2 New generation of doubly hybrid density functionals
2.1 Adiabatic connection method and Becke's hybrid functionals
2.2 Görling-Levy coupling-constant perturbation theory
2.3 Derivation of the doubly hybrid density functional XYG3
2.4 Three types of current doubly hybrid density functional
3 Systematic evaluation of XYG3
3.1 Heats of formation
3.2 Bond dissociation enthalpy
3.3 Reaction barrier height
3.4 Non-bonding interaction
4 Conclusion and outlook

CLC Number: 

[1] Hohenberg P, Kohn W. Phys. Rev. B, 1964, 136: B864-B871
[2] (a) Parr R G, Yang W T. Density Functional Theory. Oxford: Oxford University, 1998; (b) Perdew J P, Schmidt K. Density Functional Theory and Its Application to Materials (Eds. Doren V V, Geerlings P, Alsenoy C V). Belgium: AIP, 2001
[3] Koch W, Holthausen W C. A Chemistry's Guide to Density Functional Theory. Wiley-VCH, 2001
[4] Gritsenko O V, Schipper P R T, Baerends E J. J. Chem. Phys., 1997, 107: 5007-5015
[5] Kohn W, Sham L J. Phys. Rev. A, 1965, 140: 1133-1138
[6] Sharp R T, Horton G K. Phys. Rev., 1953, 90: 317-317
[7] Talman J D, Shadwick W F. Phys. Rev. A, 1976, 14: 36-40
[8] Krieger J B, Yan L, Iafrate G J. Phys. Rev. A, 1992, 45: 101-126
[9] Grabowski I, Hirata S, Ivanov S, Bartlett R J. J. Chem. Phys., 2002, 116: 4415-4425
[10] Yang W, Ayers P W, Wu Q. Phys. Rev. Lett., 2004, 92: 146404
[11] Mori-S醤chez P, Wu Q, Yang W T. J. Chem. Phys., 2005, 123: art. no. 062204
[12] Vosko S H, Wilk L, Nusair M. Canadian J. Phys., 1980, 58: 1200-1211
[13] Becke A D. Phys. Rev. A, 1988, 38: 3098-3100
[14] Lee C T, Yang W T, Parr R G. Phys. Rev. B, 1988, 37: 785-789
[15] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865-3868
[16] Tao J M, Ruzsinszky M, Scuseria G E, Csonka G I, Staroverov V N, Perdew J P. Philosophical Magazine, 2007, 87: 1071-1084
[17] Becke A D. J. Chem. Phys., 1993, 98: 5648-5652
[18] Xu X, Goddard W A. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 2673-2677
[19] Zhao Y, Truhlar D G. Accounts Chem. Research, 2008, 41: 157-167
[20] Zhao Y, Truhlar D G. J. Phys. Chem. A, 2005, 109: 5656-5667
[21] Zhang Y, Xu X, Goddard W A. Proc. Natl. Acad. Sci. U. S. A., 2009, 106: 4963-4968
[22] Perdew J P, Ruzsinszky A, Tao J M, Staroverov V M, Scuseria G E, Csonka G I. J. Chem. Phys., 2005, 123: art. no. 062201
[23] Slater C J. Quantun Theory of Molecules and Solids. New York: McGraw-Hill, 1974
[24] Perdew J P, Emzerhof M, Burke K. J. Chem. Phys., 1996, 105: 9982-9985
[25] Curtiss L A, Raghavachari K, Redfern P C, Pople J A. J. Chem. Phys., 1997, 106: 1063-1079
[26] Curtiss L A, Raghavachari K, Redfern P C, Pople J A. J. Chem. Phys., 2000, 112: 7374-7383
[27] Wodrich M D, Corminboeuf C, Schleyer P V. Org. Lett., 2006, 8: 3631-3634
[28] Burns L A, Mayagoitia A V, Sumpter B G, Sherrill C D. J. Chem. Phys., 2011, 134: 084107-1-25.
[29] Mori-Sanchez P, Cohen A J, Yang W T. J. Chem. Phys., 2006, 124: art. no. 091102
[30] Langreth D C, Perdew J P. Phys. Rev. B, 1977, 15: 2884-2901
[31] Gunnarsson O, Lundqvist B I. Phys. Rev. B, 1976, 13: 4274-4298
[32] Kurth S, Perdew J P. Phys. Rev. B, 1999, 59: 10461-10468
[33] Becke A D. J. Chem. Phys., 1993, 98: 1372-1377
[34] Zhang I Y, Wu J M, Xu X. Chem. Commun., 2010, 46: 3057-3070
[35] Zhang I Y, Luo Y, Xu X. J. Chem. Phys., 2010, 132: art. no. 194105
[36] Zhang I Y, Luo Y, Xu X. J. Chem. Phys., 2010, 133: art. no. 104105
[37] Zhao Y, Lynch B J, Truhlar D G. J. Phys. Chem. A, 2004, 108: 4786-4791
[38] Grimme S. J. Chem. Phys., 2006, 124: 034108-16
[39] Schwabe T, Grimme S. Phys. Chem. Chem. Phys., 2007, 9: 3397-3406
[40] Graham D C, Menon A S, Goerigk L, Grimme S, Radom L. J. Phys. Chem. A, 2009, 113: 9861-9873
[41] Tarnopolsky A, Karton A, Sertchook R, Vuzman D, Martin J M L. J. Phys. Chem. A, 2008, 112: 3-8
[42] Karton A, Tarnopolsky A, Lamere J F, Schatz G C, Martin J M L. J. Phys. Chem. A, 2008, 112: 12868-12886
[43] Sancho-Garcia J C, Perez-Jimenez A J. J. Chem. Phys., 2009, 131: art. no. 084108
[44] Zhang I Y, Xu X. Int. Rev. Phys. Chem., 2011, 30: 115-160
[45] Görling A, Levy M. Phys. Rev. B, 1993, 47: 13105-13113
[46] Levy M. Proc. Natl. Acad. Sci. U. S. A., 1979, 76: 6062-6065
[47] Cremer D. Mol. Phys., 2001, 99: 1899-1940
[48] Curtiss L A, Raghavachari K, Trucks G W, Pople J A. J. Chem. Phys., 1991, 94: 7221-7230
[49] Curtiss L A, Redfern P C, Raghavachari K. J. Chem. Phys., 2007, 126: art. no. 084108
[50] Curtiss L A, Raghavachari K, Redfern P C, Rassolov V, Pople J A. J. Chem. Phys., 1998, 109: 7764-7776
[51] Pople J A, Head-Gordon M, Fox D J, Raghavachari K, Curtiss L A. J. Chem. Phys., 1989, 90: 5622-5629
[52] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian, Inc., Wallingford CT, 2009.
[53] Dean J A. Lange's Handbook of Chemistry, 15th ed.. New York: McGraw-Hill, 1999
[54] Lide D R. CRC Handbook of Chemisty and Physics, 84th ed.. Boca Raton: CRC Press, 2001-2002
[55] Luo Y R. CRC Handbook of Chemistry and Physics, 84th ed.. Boca Raton CRC Press, 2002
[56] Blanksby S J, Ellison G B. Acc. Chem. Res., 2003, 36: 255-263
[57] Berkowitz J, Ellison G B, Gutman D. J. Phys. Chem., 1994, 98: 2744-2765
[58] Mcmillen D F, Golden D M. Annual Rev. Phys. Chem., 1982, 33: 493-532
[59] Simoes J A M, Beauchamp J L. Chem. Rev., 1990, 90: 629-688
[60] Irikura K K. J. Phys. Chem. A, 2002, 106: 9910-9917
[61] Ruscic B, Feller D, Dixon D A, Peterson K A, Harding L B, Asher R L, Wagner A F. J. Phys. Chem. A, 2001, 105: 1-4
[62] Seetula J A. J. Chem. Soc. Faraday Transactions, 1998, 94: 891-898
[63] Montgomery J A, Frisch M J, Ochterski J W, Petersson G A. J. Chem. Phys., 2000, 112: 6532-6542
[64] Petersson G A, Malick D K, Wilson W G, Ochterski J W, Montgomery J A. Frish M J. J. Chem. Phys., 1998, 109: 10570-10579
[65] Martin J M L, de Oliveira G. J. Chem. Phys., 1999, 111: 1843-1856
[66] Boese A D, Oren M, Atasoylu O, Martin J M L, Kallay M, Gauss J. J. Chem. Phys., 2004, 120: 4129-4141
[67] Karton A, Rabinovich E, Martin J M L, Ruscic B. J. Chem. Phys., 2006, 125: art. no. 144108
[68] Brinck T, Lee H N, Jonsson M. J. Phys. Chem. A, 1999, 103: 7094-7104
[69] Henry D J, Parkinson C J, Mayer P M, Radom L. J. Phys. Chem. A, 2001, 105: 6750-6756
[70] Chem C C, Bozzelli J W. J. Phys. Chem. A, 2003, 107: 4531-4546
[71] Johnson E R, Clarkin O J, DiLabio A G. J. Phys. Chem. A, 2003, 107: 9953-9963
[72] Yao X Q, Hou X J, Jiao H J, Xiang H W, Li Y W. J. Phys. Chem. A, 2003, 107: 9991-9996
[73] Senosiain J P, Han J H, Musgrave C B, Golden D M. Faraday Discussion, 2001, 119: 173-189
[74] Speybroeck V V, Marin G B, Waroquier M. ChemPhysChem, 2006, 7: 2205-2214
[75] Coote M L. J. Phys. Chem. A, 2004, 108: 3865-3872
[76] Izgorodina E I, Coote M L, Radom L. J. Phys. Chem. A, 2005, 109: 7558-7566
[77] Wu J M, Xu X. J. Chem. Phys., 2008, 129: art. no. 164103
[78] Zhang I Y, Wu J M, Luo Y, Xu X. J. Comput. Chem., 2011, 32: 1824-1838
[79] Zhao Y, Gonz醠ez-Garc韆 N, Truhlar D G. J Phys. Chem. A, 2005, 109: 2012-2018
[80] Zhang L L, Lu Y P, Lee Y, Zhang D H. J. Chem. Phys., 2007, 127: art. no. 234313
[81] Takatani T, Sherrill C D. Phys. Chem. Chem. Phys., 2007, 9: 6106-6114
[82] Kobayashi M, Imamura Y, Nakai H. J. Chem. Phys., 2007, 127: art. no. 074103
[83] Häser M, Almlöf J. J. Chem. Phys., 1992, 96: 489-494
[84] Rauhut G, Pulay P. Chem. Phys. Lett., 1996, 248: 223-227
[1] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[2] Liu Shaoming, Yu Bo, Zhang Wenqiang, Zhu Jianxin, Zhai Yuchun, Chen Jing. Atomic-Scale Insights into the Oxygen Ionic Transport Mechanisms of Oxygen Electrode in Solid Oxide Cells:A Review [J]. Progress in Chemistry, 2014, 26(09): 1570-1585.
[3] . Recent Progress in Density Functional Theory and Its Numerical Methods [J]. Progress in Chemistry, 2005, 17(02): 192-202.
[4] Dai Ying,Li Lemin. Applications of Density Functional Theory to Dealing with Excited States and Multiplets of Molecules [J]. Progress in Chemistry, 2001, 13(03): 167-.
Viewed
Full text


Abstract

A New Generation Density Functional XYG3