中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 1008-1022 Previous Articles   Next Articles

• Special Issue of Quantum Chemistry •

Stability Rule of Ⅲ-ⅤPolyhedral Clusters

Jia Jianfeng, Wu Haishun   

  1. Institute of Chemistry, Chinese Academy of Sciences, Linfen 041004, China
  • Received: Revised: Online: Published:
PDF ( 814 ) Cited
Export

EndNote

Ris

BibTeX

The recent investigation about the stability rules of Ⅲ-Ⅴ clusters is summarized. The Cn clusters, CnXn (X=H, F) clusters, BnNn clusters, (HBNH)n clusters, Nn clusters and carbonyl boron (BCO)n clusters are included in the present review. The most famous rules to determine the stable fullerene are isolated pentagon rule and pentagon adjacency penalty rule, which both state that pentagon in Cn cluster should be separated as far as possible. However, CnXn (X=H, F) clusters have tube-like structure, in which pentagons cluster together. The most stable BnNn clusters comprise four-, six-membered rings, in which, four-membered rings are separated as far as possible. The most stable (HBNH)n clusters, however, have needle-like structure. Although N atom is isoelectronic species of CH unit, the structure of most stable Nn clusters is remarkably different from that of CnHn. The most stable Nn clusters comprise three-, five- and six-membered rings, and have tube-like structure. The most stable (BCO)n clusters comprise three- and six-membered rings. The further investigations about the stability rule of Ⅲ-Ⅴ clusters will focus on the partially hydrogenated or fluorinated fullerenes. Contents
1 Introduction
2 Stabilityrules of fullerene Cn clusters
2.1 Discover of C60 fullerene
2.2 Isolated pentagon rule
2.3 Pentagon adjacency penalty rule
3 Tool to generate the model of polyhedral cluster
3.1 Program of Ring Spiral
3.2 Programs of Plantri, Fullgen and CaGe
4 Stabilityrules of XnHn and XnFn
4.1 Stability rule of XnHn (X=C, Si, Ge, Sn; n=4—24)
4.2 Stability rule of CnHn and CnFn (n=26—60)
4.3 Endo structure of C60H60 and C60F60
5 Stabilityrules of other fullerene-like polyhedral cluters
5.1 Stability rule of BnNn clusters
5.2 Stability rule of (HBNH)n clusters
5.3 Stability rule of Nn clusters
5.4 Stability rule of (BCO)n clusters
6 Conclusions and outlook

CLC Number: 

[1] Jones D E H. New Sci., 1996, 32: 245
[2] Jones D E H. The Inventions of Daedalus. San Francisco: W. H. Freeman, 1982. 118-119
[3] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. Nature, 1985, 318: 162-163
[4] Disch R L, Schulman J M. Chem. Phys. Lett., 1986, 125: 465-466
[5] Kroto H W, Allaf A W, Balm S P. Chem. Rev., 1991, 91: 1213-1235
[6] Krätschmer W, Lamb L D, Fostiropoulos K, Huffman D R. Nature, 1990, 347: 354-358
[7] Liu Y, O'Brien S C, Zhang Q, Heath J R, Tittel F K, Curl R F, Kroto H W, Smalley R E. Chem. Phys. Lett., 1986, 126: 215-217
[8] O'brien S C, Heath J R, Kroto H W, Curl R F, Smalley R E. Chem. Phys. Lett., 1986, 312: 99-102
[9] DiederichF, Whetten R L. Accounts Chem., Res., 1992, 25: 119-126
[10] Kikuchi K, Nakahara N, Wakabayashi T, Honda M, Mataumiya H, Moriwaki T, Suzuki S, Shiromaru H, Saito K, Yamamuchi K, Ikemoto I, Achiba Y. Chem. Phys. Lett., 1992, 188: 177-180
[11] Schmalz T G, Seitz W A, Klein D J, Hite G E. J. Am. Chem. Soc., 1988, 110: 1113-1127
[12] Scuseria G E. Chem. Phys. Lett., 1991, 180: 451-456
[13] Austin S J, Fowler P W, Orlandi G, Manolopoulos D E, Zerbetto F. Chem. Phys. Lett., 1994, 226: 219-225
[14] Balasubramanian K. Chem. Phys. Lett., 1993, 206: 210-216
[15] Bakowies D, Gelessus A, Thiel W. Chem. Phys. Lett., 1992, 197: 324-329
[16] Colt J R, Scuseria G E. Chem. Phys. Lett., 1992, 199: 505-512
[17] Wang X Q, Wang C Z, Zhang B L, Ho K M. Chem. Phys. Lett., 1992, 200: 35-38
[18] Cheng H P. Chem. Phys. Lett., 1992, 197: 44-48
[19] Lin Y T, Mishra R K, Lee S L. Chem. Phys. Lett., 1999, 302: 108-112
[20] Raghavachari K, Rohlfing C M. Chem. Phys. Lett., 1993, 208: 436-440
[21] Cummins T R, Bürk M, Schmidt M, Armbruster J F, Fuchs D, Adelmann P, Schuppler S, Michel R H, Kappes M M. Chem. Phys. Lett., 1996, 261: 228-233
[22] Sun G, Kertesz M. Chem. Phys. Lett., 2000, 328: 387-395
[23] Sun M L, Slanina Z, Lee S L, Uhlík F. Chem. Phys. Lett., 1995, 246: 66-72
[24] Wang X Q, Wang C Z, Zhang B L, Ho K M. Chem. Phys. Lett., 1994, 217: 199-203
[25] Wang X Q, Wang C Z, Zhang B L, Ho K M. Chem. Phys. Lett., 1993, 207: 349-353
[26] Bühl M, Wüllen C V. Chem. Phys. Lett., 1995, 247: 63-68
[27] Tsuzuki S, Tanabe K. Chem. Phys. Lett., 1992, 195: 352-354
[28] Raghavachari K. Chem. Phys. Lett., 1992, 190: 397-400
[29] Sun G. Chem. Phys. Lett., 2003, 367: 26-33
[30] Okada S, Saito S. Chem. Phys. Lett., 1995, 247: 69-78
[31] Wang X Q, Wang C Z, Zhang B L, Ho K M. Chem. Phys. Lett., 1993, 214: 193-196
[32] Zhang B L, Wang C Z, Ho K M. Chem. Phys. Lett., 1992, 193: 225-230
[33] Zhang B L, Wang C Z, Ho K M, Xu C H, Chan C T. J. Chem. Phys., 1993, 98: 3095-3102
[34] Gan L H, Liu J, Hui Q, Shao S Q, Liu Z H. Chem. Phys. Lett., 2009, 472: 224-227
[35] Yi J Y, Bemholc J. J. Chem. Phys., 1992, 96: 8634-8636
[36] Murry R L, Strout D L, Odom G K, Scuseria G E. Nature, 1993, 366: 665-667
[37] Austin S J, Fowler P W, Manolopoulos D E, Zerbetto F. J. Phys. Chem., 1995, 99: 8076-8081
[38] Fowler P W, Manolopoulos D E, Orlandi G, Zerbetto F. J. Chem. Soc. Faraday Trans., 1995, 91: 1421-1423
[39] Zhang B L, Wang C Z, Ho K M, Xu C H, Chan C T. J. Chem. Phys., 1992, 97: 5007-5011
[40] Raghavachari K, Rohlfing C M. J. Phys. Chem., 1992, 96: 2463-2466
[41] Campbell E E B, Fowler P W, Mitchell D, Zerbetto F. Chem. Phys. Lett., 1996, 250: 544-548
[42] Warshel A, Karplus M J. J. Am. Chem. Soc., 1972, 94: 5612-5625
[43] Albertazzi E, Domene C, Fowler P W, Heine T, Seifert G, Alsenoy C V, Zerbetto F. Phys. Chem. Chem. Phys., 1999, 1: 2913-2918
[44] Wu H S, Xu X H, Jiao H. J. Phys. Chem., 2004, 108: 3813-3816
[45] Wu H S, Tian X X, Jia J F, Feng R J. Chinese J. Struct. Chem., 2006, 25: 1051-1056
[46] Chang Y F, Zhang J P, Sun H, Hong B, An Z, Wang R S. Int. J. Quantum Chem., 2005, 105: 142-147
[47] Shao N, Gao Y, Zeng X C. J. Phys. Chem. C, 2007, 111: 17671-17677
[48] Slanina Z, Ishimura K, Kobayashi K, Nagase S. Chem. Phys. Lett., 2004, 384: 114-118
[49] Manolopoulos D E, May J C, Down S E. Chem. Phys. Lett., 1991, 181: 105-111
[50] Manolopoulos D E. Chem. Phys. Lett., 1992, 192: 330-330
[51] Manolopoulos D E. Chem. Phys. Lett., 1993, 204: 1-7
[52] Brinkmann G. Chem. Phys. Lett., 1997, 271: 193-198
[53] Yoshida M, Fowler P W. Chem. Phys. Lett., 1997, 278: 256-261
[54] Brinkmann G, McKay B D. Electronic Notes in Discrete Mathematics, 1999, 3: 28-31
[55] Brinkmann G, Greenberg S, Greenhill C, McKay B D, Thomas R, Wollan P. Discrete Mathematics, 2005, 305: 33-54
[56] Brinkmann G, McKay B D. Discrete Mathematics, 2005, 301: 147-163
[57] Katz T J, Acton N. J. Am. Chem. Soc., 1973, 95: 2738-2739
[58] Eaton P E, Cole T W. J. Am. Chem. Soc., 1964, 86: 3157-3158
[59] Eaton P E, Or Y S, Branca S J. J. Am. Chem. Soc., 1981, 103: 2134-2136
[60] Ternansky R J, Balogh D W, Paquette L A. J. Am. Chem. Soc., 1982, 104: 4503-4504
[61] Paquette L A, Ternansky R J, Balogh D W, Kentgen G. J. Am. Chem. Soc., 1983, 105: 5446-5450
[62] Wiberg K B. Angew. Chem. Int. Ed. Engl., 1986, 25: 312-322
[63] Beckhaus H D, Ruchardt C, Lagerwall D R, Paquette L A, Wahl F, Prinzbach H. J. Am. Chem. Soc., 1994, 116: 11775-11778
[64] Beckhaus H D, Ruchardt C, Lagerwall D R, Paquette L A, Wahl F, Prinzbach H. J. Am. Chem. Soc., 1995, 117: 8885-8885
[65] Maier G, Pfriem S, Schäfer U, Matusch R. Angew. Chem. Int. Ed. Engl., 1978, 17: 520-521
[66] Tanaka M, Sekiguchi A. Angew. Chem. Int. Ed., 2005, 44: 5821-5823
[67] Earley C W. J. Phys. Chem. A, 2000, 104: 6622-6627
[68] Kumar V, Kawazoe Y. Phys. Rev. Lett., 2003, 90: 055502
[69] Kumar V, Kawazoe Y. Phys. Rev. B, 2007, 75: art. no. 155425
[70] Bandyopadhyay D. Nanotechnology, 2009, 20: art. no. 275202
[71] Jia J, Liu C, Wu H S, Schleyer P V R, Jiao H. J. Phys. Chem. C, 2009, 113: 8077-8084
[72] Dunlap B I, Brenner D W, Mintmire J W, Mowrey R C, White C T. J. Phys. Chem., 1991, 95: 5763-5768
[73] Saunders M. Science, 1991, 253: 330-331
[74] Yoshida Z, Dogane I, Ikehira H, Endo T. Chem. Phys. Lett., 1992, 201: 481-484
[75] Guo T, Scuseria G E. Chem. Phys. Lett., 1992, 191: 527-532
[76] Zdetsis A D. Phys. Rev. B, 2008, 77: art. no. 115402
[77] Jia J, Wu H S, Xu X H, Zhang X M, Jiao H. Org. Lett., 2008, 10: 2573-2576
[78] Linnolahti M, Karttunen A J, Pakkanen T A. ChemPhysChem, 2006, 7: 1661-1663
[79] Karttunen A J, Linnolahti M, Pakkanen T A. J. Phys. Chem. C, 2007, 111: 2545-2547
[80] Karttunen A J, Linnolahti M, Pakkanen T A. J. Phys. Chem. C, 2007, 111: 6318-6320
[81] Scuseria G E, Odom G K. Chem. Phys. Lett., 1992, 195: 531-533
[82] Clare B W, Kepert D L. J. Mol. Struct (Theochem), 1996, 367: 1-13
[83] Jia J, Wu H-S, Xu X-H, Zhang X-M, Jiao H. J. Am. Chem. Soc. 2008, 130: 3985-3988
[84] Golberg D, Bando Y, Stéphan O, Kurashima K. App. Phys. Lett., 1998, 73: 2441-2443
[85] Xia X, Jelski D A, Bowser J R, George T F. J. Am. Chem. Soc., 1992, 114: 6493-6496
[86] Silaghi-Dumitrescu I, Haiduc I, Sowerby D B. Inorg. Chem., 1993, 32: 3755-3758
[87] Jensen F, Toftlund H. Chem. Phys. Lett., 1993, 201: 89-96
[88] Strout D L. J. Phys. Chem. A, 2000, 104: 3364-3366
[89] Strout D L. Chem. Phys. Lett., 2004, 383: 95-98
[90] Blase X, De Vita A, Charlier J C, Car R. Phys. Rev. Lett., 1998, 80: 1666-1669
[91] Zhu H Y, Klein D J, Seitz W A. Inorg. Chem., 1995, 34: 1377-1383
[92] Sun M L, Slanina Z, Lee S L. Chem. Phys. Lett., 1995, 233: 279-283
[93] Alexandre S S, Mazzoni M S C, Chacham H. Appl. Phys. Lett., 1999, 75: 61-63
[94] Fowler P W, Heine T, Mitchell D, Schmidt R, Seifert G. J. Chem. Soc. Faraday Trans., 1996, 92: 2197-2201
[95] Serfert G, Fowler P W, Mitchell D, Porezag D, Frauenheim T. Chem. Phys. Lett., 1997, 268: 352-358
[96] Rogers K M, Fowler P W, Seifert G. Chem. Phys. Lett., 2000, 332: 43-50
[97] Wu H S, Xu X H, Jiao H, Zhang F Q, Jia J. Chinese Science Bulletin, 2003, 48: 1102-1107
[98] Wu H S, Jiao H. Chem. Phys. Lett., 2004, 386: 369-372
[99] Zope R R, Baruah T, Pederson M R, Dunlap B I. Chem. Phys. Lett., 2004, 393: 300-304
[100] Cui X Y, Wu HS. Chinese J. Chem., 2005, 23: 117-120
[101] Wu H S, Cui XY, Qin XF, Jiao H. J. Mol. Struct. (Theochem), 2005, 714: 153-155
[102] Wu H S, Cui XY, Xu XH. J. Mol. Struct. (Theo-Chem), 2005, 717: 107-109
[103] Luo B, Gladfelter W L. Inorg. Chem., 2002, 41: 590-597
[104] Timoshkin A Y, Schaefer H F Ⅲ . J. Am. Chem. Soc., 2004, 126: 12141-12154
[105] Kormos B L, Jegier J A, Ewbank P C, Pernisz U, Young V G, Cramer C J, Gladfelter W L. J. Am. Chem. Soc., 2005, 127: 1493-1503
[106] Timoshkin A Y, Schaefer H F Ⅲ. Inorg. Chem., 2005, 44: 843-845
[107] Wang H, Wu H S, Jia J F. Chinese J. Chem., 2006, 24: 731-738
[108] Wang H, Jia J F, Xu X H, Wu H S. Chem. Phys. Lett., 2006, 423: 118-122
[109] Karttunen A J, Linnolahti M, Pakkanen T A. J. Phys. Chem. C, 2008, 112: 10032-10037
[110] Christe K O, Wilson W W, Sheehy J A, Boatz J A. Angew. Chem. Int. Ed., 1999, 38: 2004-2009
[111] Chen C, Shyu S F. Int. J. Quantum Chem., 1999, 73: 349-356
[112] Manaa M R. Chem. Phys. Lett., 2000, 331: 262-268
[113] Strout D L. J. Phys. Chem. A⑧ 2004, 108: 2555-2558
[114] Zhou H, Wong N B, Zhou G, Tian A. J. Phys. Chem. A, 2006, 110: 3845-3852
[115] Zhou H, Wong N B, Zhou G, Tian A. J. Phys. Chem. A, 2006, 11: 7441-7446
[116] Zhou M, Wang Z X, Schleyer P V R, Xu Q. Chem. Phys. Chem., 2003, 4: 763-766
[117] Wu H S, Jiao H, Wang Z X, Schleyer P V R. J. Am. Chem. Soc., 2003, 125: 4428-4429
[118] Wu H S, Qin X F, Xu X H, Jiao H, Schleyer P v R. J. Am. Chem. Soc., 2005, 127: 2334-2338
[119] Cui X Y, Jia J F, Yang B S, Wu H S. Acta Phys. Chim. Sin., 2009, 25: 2501-2506
[120] Pei Y, Zeng X C. J. Clust. Sci., 2011, 22: 343-354
[121] Zhao J, Wang L, Li F, Chen Z. J. Phys. Chem. A., 2010, 114: 9969-9972
[122] Kregg D Q, Cherno B K, Rosi N G, Ryza N M, Wang X Q. J. Chem. Theory Comput., 2011, 7: 2017-2020
[123] Tan Y Z, Liao Z J, Qian Z Z, Chen R T, Wu X, Liang H, Han X, Zhu F, Zhou S J, Zheng Z P, Lu X, Xie S Y, Huang R B, Zheng L S. Nature Mater., 2008, 7: 790-794
[124] Tan Y Z, Xie S Y, Huang R B, Zheng L S. Nature Chem., 2009, 1: 450-460
[125] Fowler P W, Myrvold W. Phys. Chem. Chem. Phys., 2010, 12: 14822-14826
[126] Gao X L, Gan L H, An J, Pan F S. Struct. Chem., 2011, 22: 749-755
[127] http: //cs.anu.edu.au/~bdm/plantri
[128] http: //www.math.uni-bielefeld.de/~CaGe/
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[4] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[5] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[6] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[7] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[8] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[9] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[10] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[11] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[12] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[13] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[14] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[15] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.