中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 1001-1007 Previous Articles   Next Articles

Special Issue: 计算化学

• Special Issue of Quantum Chemistry •

Ab Initio Computational Method for Classical Valence Bond Theory

Su Peifeng, Wu Wei   

  1. State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Compuational Chemistry, and College of Chemistry Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received: Revised: Online: Published:
PDF ( 1175 ) Cited
Export

EndNote

Ris

BibTeX

In modern quantum chemistry, valence bond (VB) theory and molecular orbital (MO) theory are the two general theoretical approaches for chemical bonding. VB theory provides clear interpretation and chemical insights by employing covalent and ionic VB structures explicitly. This review focuses on the methodology development of the current modern classical VB methods in the improvement of computational accuracy and the extension of application areas. Moreover, the further development of modern classical VB methods is briefly prospected. Contents
1 Introduction
2 Ab initio VB methods
2.1 VBSCF
2.2 BOVB
2.3 VBCI
2.4 VBPT2
3 Ab initio VB methods for complicated systems
3.1 VBSCF
3.2 VBSM
3.3 VB/MM
4 Conclusion and perspective

CLC Number: 

[1] Shaik S, Hiberty P C. Valence Bond Theory, Its History, Fundamentals, and Applications: A Primer. In Rev. Comput. Chem(Eds. Lipkowitz K B, Thomas R L, Cundari). New York: Wiley-VCH, 2004, Vol. 20, 1-100
[2] Shaik S. J. Am. Chem. Soc., 1981, 103: 3692-3701
[3] Cooper D L, Gerratt J, Raimondi M. The spin-coupled valence bond theory of electronic structure. in Valence Bond Theory and Chemical Structure(Eds. Klein D J, Trinajstic N). Amsterdam: Elsevier, 1990. 287-349
[4] Shaik S, Hiberty P C. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1: 18-29
[5] Wu W, Su P, Shaik S, Hiberty P C. Chem. Rev., 2011, 111: 7557-7593
[6] Goddard W A III. Int. J. Quant. Chem., 1969, 4: 593-600
[7] Goddard W A III, Harding L B. Annu. Rev. Phys. Chem., 1978, 29: 363-396
[8] Goddard W A III. Phys. Rev., 1967, 157: 81-93
[9] Bobrowicz F W, Goddard W A Ⅲ. The Self-Consistent Field Equations for Generalied Valence Bond and Open-Shell Harrtree-Fock Wavefunctions. in Modern Theoretical Chemistry: Methods of Electronic Structure Theory (Ed. Schaefer H F Ⅲ). New York: Plenum Press, 1977, Vol.3, Chap. 4: 79-127
[10] Goddard W A III, Dunning T H, Hunt W J, Hay P J. Acc. Chem. Res., 1973, 6: 368-376
[11] Gerratt J, Cooper D L, Karadakov P B, Raimondi M. Chem. Soc. Rev., 1997, 26: 87-100
[12] Sironi M, Raimondi M, Martinazzo R, Gianturco F A. Recent developments of the SCVB method. in Valence Bond Theory(Ed. Cooper D L). Amsterdam: Elsevier, 2002. 261-277
[13] Cooper D L, Gerratt J, Raimondi M. Modern Valence Bond Theory. in Adv. Chem. Phys(Ed. Lawley K P). 1987, Vol. 69, 319-397
[14] Cooper D L, Gerratt J, Raimondi M. Chem. Rev., 1991, 91: 929-964
[15] Gerratt J. General Theory of Spin-Coupled Wave Functions for Atoms and Molecules. in Adv. At. Mol. Phys(Eds. Bates D R, Esterman I. ). Academic Press, 1971, Vol. 7, 141-221
[16] Kimihiko H, Haruyuki N, Kenichi N, Michel D J. Chem. Phys., 1996, 105: 9227-9239
[17] Chen H, Ikeda-Saito M, Shaik S. J. Am. Chem. Soc., 2008, 130: 14778-14790
[18] Thorsteinsson T, Cooper D L. An overview of the CASVB approach to modern valence bond calculations. in Quantum Systems in Chemistry and Physics. Volume 1: Basic problems and models systems(Eds. Hernández-Laguna A, Maruani J, McWeeny R, Wilson S) Dordrecht: Kluwer, 2000. 303-326
[19] Cooper D L, Thorsteinsson T, Gerratt J, Per-Olov L. Modern VB representations of CASSCF wave functions and the fully-variational optimization of modern VB wave functions using the CASVB strategy. in Adv. Quant. Chem. Academic Press, 1998. Vol. 32, 51-67
[20] Cooper D L, Karadakov P B, Thorsteinsson T. Modern Valence Bond Description of Gas-Phase Pericyclic Reactions. in Valence Bond Theory(Ed. Cooper D L). Amsterdam: Elsevier, 2002. 41-53
[21] van Lenthe J H, Balint-Kurti G G. Chem. Phys. Lett., 1980, 76: 138-142
[22] van Lenthe J H, Balint-Kurti G G. J. Chem. Phys., 1983, 78: 5699-5713
[23] Hiberty P C, Shaik S. Theor. Chem. Acc., 2002, 108: 255-272
[24] Hiberty P C, Humbel S, Byrman C P, van Lenthe J H. J. Chem. Phys., 1994, 101: 5969-5976
[25] Hiberty P C, Flament J P, Noizet E. Chem. Phys. Lett., 1992, 189: 259-265
[26] Wu W, Song L, Cao Z, Zhang Q, Shaik S. J. Phys. Chem. A, 2002, 106: 2721-2726
[27] Song L, Wu W, Zhang Q, Shaik S. J. Comput. Chem., 2004, 25: 472-478
[28] Chen Z, Song J, Shaik S, Hiberty P C, Wu W. J. Phys. Chem. A, 2009, 113: 11560-1569
[29] Tomasi J, Persico M. Chem. Rev., 1994, 94: 2027-2094
[30] Tomasi J, Mennucci B, Cammi R. Chem. Rev., 2005, 105: 2999-3094
[31] Cramer C J, Truhlar D G. Chem. Rev., 1999, 99: 2161-2200
[32] Kelly C P, Cramer C J, Truhlar D G. J. Chem. Theory Comput., 2005, 1: 1133-1152
[33] Marenich A V, Olson R M, Kelly C P, Cramer C J, Truhlar D G. J. Chem. Theory Comput., 2007, 3: 2011-2033
[34] Song L, Wu W, Zhang Q, Shaik S. J. Phys. Chem. A, 2004, 108: 6017-6024
[35] Su P, Wu W, Kelly C P, Cramer C J, Truhlar D G. J. Phys. Chem. A, 2008, 112: 12761-12768
[36] Shurki A, Crown H A. J. Phys. Chem. B, 2005, 109: 23638-23644
[37] Sharir-Ivry A, Crown H A, Wu W, Shurki A. J. Phys. Chem. A, 2008, 112: 2489-2496
[38] Pauncz R. Spin Eigenfunctions. New York: Plenum Press, 1979
[39] Chirgwin B H, Coulson C A. Proc. Roy. Soc. London. Ser. A, 1950, 201: 196-209
[40] Aaqvist J, Warshel A. Chem. Rev., 1993, 93: 2523-2544
[1] Yang Zhongzhi. Electronegativity Equalization [J]. Progress in Chemistry, 2012, 24(06): 1038-1049.
[2] Jiang Hong. The Band Gap Problem: the State of the Art of First-Principles Electronic Band Structure Theory [J]. Progress in Chemistry, 2012, 24(06): 910-927.
[3] Zheng Xiao, Xu Ruixue, Xu Jian, Jin Jinshuang, Hu Jie, Yan Yijing. Hierarchical Equations of Motion for Quantum Dissipation and Quantum Transport [J]. Progress in Chemistry, 2012, 24(06): 1129-1152.
[4] Liu Wenjian**. New Advances in Relativistic Quantum Chemistry [J]. Progress in Chemistry, 2007, 19(06): 833-851.
[5] Zhiwei Li Cunyuan Zhao Liuping Chen . Theoretical Study on Structures and Properties of Aromatic Clusters [J]. Progress in Chemistry, 2006, 18(12): 1599-1607.
[6] Zhang Yang,Yang Jichu,Yu Yangxin,Li Yigui. Molecular Simulation and Its Applications in the Field of Supercritical Fluids [J]. Progress in Chemistry, 2005, 17(06): 955-962.
[7] . Recent Progress of Multiscale Science [J]. Progress in Chemistry, 2005, 17(02): 186-191.
[8] Dai Ying,Li Lemin. Applications of Density Functional Theory to Dealing with Excited States and Multiplets of Molecules [J]. Progress in Chemistry, 2001, 13(03): 167-.
[9] Zhu Weiliang,Jiang Hualiang,Chen Kaixian,Ji Ruyun,Cao Yang. New Advances in Quantum Chemistry Calculation Methods of Biomacromolecular System [J]. Progress in Chemistry, 1999, 11(04): 367-.