中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (05): 852-862 Previous Articles   Next Articles

• Review •

Progress in Supported Phospholipid Bilayers

Zhang Zhilei, Wang Zhining, Gao Xueli, Gao Congjie   

  1. Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
  • Received: Revised: Online: Published:
PDF ( 2154 ) Cited
Export

EndNote

Ris

BibTeX

Supported phospholipid bilayers(SPBs) are popular as model systems for cell membranes and are ideal material for fixing biological active substances. In addition, SPBs can not only maintain the biological activity of molecules, but also inhibit other non-specific adsorption of biological molecules. SPBs are promising for future applications in the transmembrane protein, biomimetics, treating water, biomedicine and biosensors. The characterization and preparation methods of SPBs are reviewed, which include Langmuir-Blodgett technique, lipid vesicles fusion approach, and the combination of Langmuir-Blodgett technique and vesicles fusion approach. It is described in detail that the formation mechanisms of SPBs triggered by vesicles fusion approach. The factors of the formation of SPBs are also reviewed in this paper, including the concentration of vesicles, buffer solution, temperature, charge of vesicles and the solid surface. In the end, the applications of SPBs and the latest trends in the study of SPBs are predicted.

Contents
1 Introduction
2 Characterization methods of SPBs
3 Preparation methods of SPBs
3.1 Langmuir-Blodgett technique
3.2 Vesicle fusion
3.3 Combination of Langmuir-Blodgett monolayer transfer and vesicle fusion
4 Influence factor
4.1 Influencing of surface charge about vesicle and support
4.2 Influencing of buffer solution
4.3 Influencing of temperature
4.4 Influencing of vesicle concentration
4.5 Influencing of surface property
4.6 Influencing of osmotic pressure
5 Application
5.1 Biomembrane model
5.2 Sensors
5.3 Biomedicine
5.4 Treating water
6 Prospects

CLC Number: 

[1] Parmar M M, Edwards K, Madden T D. Biochim. Biophys. Acta, 1999, 1421(1): 77—90
[2] Curran A R, Templer R H, Booth P J. Biochemistry, 1999, 38(29): 9328—9336
[3] Sackmann E. Science, 1996, 271(5245): 43—48
[4] Steinem C, Janshoff A, Ulrich W P, Sieber M, Galla H J. Biochim. Biophys. Acta, 1996, 1279(2): 169—180
[5] Henrickson S E, Misakian M, Robertson B, Kasianowicz J J. Phys. Rev. Lett., 2000, 85(14): 3057—3060
[6] Nielsen L K, Vishnyakov A, Jorgensen K, Bjornholm T, Mouritsen O G. J. Phys. Condens. Matter., 2000, 12(8A): A309—A314
[7] Wang J G, Teng R R, Wang E K. Acta Chim. Sinica, 2001, 59(12): 2138—2142
[8] Gao H, Luo G A, Feng J, Ottova A L, Tien H T. Acta Chim. Sinica, 2001, 59(2): 220—223
[9] Fang Y, Frutos A G, Lahiri J. J. Am. Chem. Soc., 2002, 124(11): 2394—2395
[10] Zviman M, Tien H T. Biosens. Bioelectron., 1991, 6(1): 37—42
[11] Groves J T, Ulman N, Boxer S G. Science, 1997, 275(5300): 651—653
[12] Castellana E T, Cremer P S. Surf. Sci. Rep., 2006, 61(10): 429—444
[13] Schuster B, Sleytr U B. Curr. Nanosci., 2006, 2(2): 143—152
[14] Haggin J. Chem. Eng. News, 1988, 66(23): 7—16
[15] Reimhult E, Kumar K. Trends Biotechnol., 2008, 26(2): 82—89
[16] Mueller P, Rudin D O, Tien H T, Wescott W C. Nature, 1962, 194: 979—980
[17] Mueller P, Rudin D O, Tien H T, Wescott W C. J. Phys. Chem., 1963, 67: 534—535
[18] Tamm L K, Mcconnell H M. Biophys. J., 1985, 47(1): 105—113
[19] Roy M O, Pugniere M, Jullien M, Chopineau J, Mani J C. J. Mol. Recognit., 2001, 14(1): 72—78
[20] Kaminisky M J, Mackenzie C R, Mooibroek M J, Dahms T E, Hirama T, Houghton A N, Chapman P B, Evans S V. J. Biol. Chem., 1999, 274(9): 5597—5604
[21] Mozsolits H, Wirth H J, Werkmeister J, Aguilar M I. Biochim. Biophys. Acta, 2001, 1512(1): 64—76
[22] Harrison B A, MacKenzie R, Hirama T, Lee K K, Altman E. J. Immun. Meth., 1998, 212(1): 29—39
[23] Reimhult E, Hook F, Kasemo B. Langmuir, 2003, 19(5): 1681—1691
[24] Richter R P, Brisson A R. Langmuir, 2004, 20(11): 4609—4613
[25] Reimhult E, Zaech M, Hoeoek F, Kasemo B. Langmuir, 2006, 22(7): 3313—3319
[26] Kwon J, Hong J, Kim Y S, Lee D Y, Lee K, Lee S M, Park S. Rev. Sci. Instrum., 2003, 74(10): 4378—4382
[27] 陈耀文(Chen Y W), 林月娟(Lin Y J), 张海丹(Zhang H D), 沈智威(Shen Z W), 沈忠英(Shen Z Y). 中国体视学与图像分析(Chinese Journal of Stereology and Image Analysis), 2006, 11(1): 53—58
[28] Goksu E I, Vanegas J M, Blanchette C D, Lin W C, Longo M L. Biochim. Biophys. Acta, 2009, 1788(1): 254—266
[29] Richter R, Mukhopadhyay A, Brisson A. Biophys J., 2003, 85(5): 3035—3047
[30] Tawa K, Morigaki K. Colloids Surf. B, 2010, 81(2): 447—451
[31] Cuypers P A, Willems G M, KopJos M M, Corsel J W, Janssen M P, Hermens W T. Proteins at Interfaces, 1987, 343: 208—221
[32] 刘妍(Liu Y), 陈艳艳(Chen Y Y), 靳刚(Jin G). 纳米科技(Nanotechnology), 2007, 4(1): 22—26
[33] Seul M, Eisenberger P, McConnell H M. Proc. Natl. Acad. Sci. USA, 1983, 80(18): 5795—5797
[34] Brzozowska M, Oberts B P, Blanchard G J, Majewski J, Krysinski P. Langmuir, 2009, 25(16): 9337—9345
[35] Horton M R, Hoefling F, Raedler J O, Franosch T. Soft Matter, 2010, 6(12): 2648—2656
[36] Granito C, Goldenberg L M, Bryce M R, Monkman A P, Troisi L, Pasimeni L, Petty M C. Langmuir, 1996, 12(2): 472—476
[37] Rinia H A, Demel R A, van der Eerden J P, de Kruijff B. Biophys J., 1999, 77(3): 1683—1693
[38] Dufrene Y F, Barger W R, Green J D, Lee G U. Langmuir, 1997, 13(18): 4779—4784
[39] Kalb E, Frey S, Tamm L K. Biochim. Biophys. Acta, 1992, 1103(2): 307—316
[40] Horn R G. Biochim. Biophys. Acta, 1984, 778(1): 224—228
[41] Brian A A, Mcconnell H M. Proc. Natl. Acad. Sci. USA, 1984, 81(19): 6159—6163
[42] Jass J, Tjarnhage T, Puu G. Biophys. J., 2000, 79(6): 3153—3163
[43] Richter R P, Brisson A R. Biophys J., 2005, 88(5): 3422—3433
[44] Ei Kirat K, Morandat S, Dufrene Y F. Biochim. Biophys. Acta, 2010, 1798(4): 750—765
[45] Lagerholm B C, Starr T E, Volovyk Z N, Thompson N L. Biochemistry, 2000, 39(8): 2042—2051
[46] Cremer P S, Boxer S G. J. Phys. Chem. B, 1999, 103(13): 2554—2559
[47] Zasadzinski J A, Helm C A, Longo M L, Weisenhorn A L, Gould S A, Hansma P K. Biophys. J., 1991, 59(3): 755—760
[48] Egawa H, Furusawa K. Langmuir, 1999, 15(5): 1660—1666
[49] Starr T E, Thompson N L. Langmuir, 2000, 16(26): 10301—10308
[50] Ajo-Franklin C M, Kam L, Boxer S G. Proc. Natl. Acad. Sci. USA, 2001, 98(24): 13643—13648
[51] Rossetti F F, Bally M, Michel R, Textor M, Reviakine I. Langmuir, 2005, 21(14): 6443—6450
[52] Stelzle M, Weissmueller G, Sackmann E. J. Phys. Chem., 1993, 97(12): 2974—2981
[53] Marakhova I I, Vereninov A A, Toropova F V, Vinogradova T A. Biochim. Biophys. Acta, 1998, 1368(1): 61—72
[54] Yang J, Kleijn J M. Biophys. J., 1999, 76(1): 323—332
[55] Gritsch S, Nollert P, Jahnig F, Sackmann E. Langmuir, 1998, 14(11): 3118—3125
[56] Bunjes N, Schmidt E K, Jonczyk A, Rippmann F, Beyer D, Ringsdorf H, Grber P, Knoll W, Naumann R. Langmuir, 1997, 13(23): 6188—6194
[57] Lahiri J, Kalal P, Frutos A G, Jonas S J, Schaeffler R. Langmuir, 2000, 16(20): 7805—7810
[58] Salamon Z, Wang Y, Tollin G, Macleod H A. Biochim. Biophys. Acta, 1994, 1195(2): 267—275
[59] Puu G, Gustafson I. Biochim. Biophys. Acta, 1997, 1327(2): 149—161
[60] Richter R P, Berat R, Brisson A R. Langmuir, 2006, 22(8): 3497—3505
[61] Crane J M, Kiessling V, Tamm L K. Langmuir, 2005, 21(4): 1377—1388
[62] Seifert U. Adv. Phys., 1997, 46(1): 135—137
[63] Zhdanov V P, Keller C A, Glasma K, Kasemo B. Chem. Phys., 2000, 112(2): 900—909
[64] Zhdanov V P, Kasemo B. Langmuir, 2001, 17(12): 3518—3521
[65] Reimhult E, Hook F, Kasemo B. Phys. Rev. E, 2002, 66(5): art. no. 051905
[66] Mclaughlin A, Grathwohl C, Mclaughlin S. Biochim. Biophys. Acta, 1978, 513(3): 338—357
[67] Reviakine I, Brisson A. Langmuir, 2000, 16(4): 1806—1815
[68] Kunze A, Svedhem S, Kasemo B. Langmuir, 2009, 25(9): 5146—5158
[69] Seantier B, Breffa C, Félix O, Decher G. J. Phys. Chem. B, 2005, 109(46): 21755—21765
[70] Gregory D P, Ginsberg L. Biochim. Biophys. Acta, 1984, 769(1): 238—244
[71] Ekeroth J, Konradsson P, Hk F. Langmuir, 2002, 18(21): 7923—7929
[72] Leckband D E, Helm C A, Israelachvili J. Biochemistry, 1993, 32(4): 1127—1140
[73] Nollert P, Kiefer H, Jahnig F. Biophys. J., 1995, 69(4): 1447—1455
[74] Sofou S, Thomas J L. Biosens. Bioelectron., 2003, 18(4): 445—455
[75] Boudard S, Seantier B, Breffa C, Decher G, Felix O. Thin Solid Films, 2005, 495(1/2): 246—251
[76] Keller C A, Kasemo B. Biophys. J., 1998, 75(3): 1397—1402
[77] Gromelsk S, Saraiva A M, Krastev R, Brezesinski G. Colloids Surf., B, 2009, 74(2): 477—483
[78] Cho N J, Frank C W, Kasemo B, Hook F. Nature Protocols, 2010, 5(6): 1096—1106
[79] Hauser H, Oldani D, Phillips M C. Biochemistry, 1973, 12(22): 4507—4517
[80] Sundh M, Svedhem S, Sutherland D S. J. Phys. Chem. B, 2011, 115(24): 7838—7848
[81] Jonsson P, Hook F. Langmuir, 2011, 27(4): 1430—1439
[82] Lu X D, Ottova A L, Tien H T. Bioelectrochem. Bioenerg., 1996, 39(2): 285—289
[83] Achalkumar A S, Bushby R J, Evans S D. Soft Matter, 2010, 6(24): 6036—6051
[84] Czolkos I, Jesorka A, Orwar O. Soft Matter, 2011, 7(10): 4562—4576
[85] Szekely O, Schilt Y, Steiner A, Raviv U. Langmuir, 2011, 27(24): 14767—14775
[86] Ziblat R, Leiserowitz L, Addadi L. J. Am. Chem. Soc., 2010, 132(28): 9920—9927
[87] Garcia-Manyes S, Redondo-Morata L, Oncins G, Sanz F. J. Am. Chem. Soc., 2010, 132(37): 12874—12886
[88] Domanska M K, Kiessling V, Stein A, Fasshauer D, Tamm L K. J. Biol. Chem., 2009, 284(46): 32158—32166
[89] Tabaei S R, Jonsson P, Branden M, Hook F. J. Struct. Biol., 2009, 168(1): 200—206
[90] Becucci L, D'Amico M, Daniele S, Olivotto M, Pozzi A, Guidelli R. Bioelectrochemistry, 2010, 78(2): 176—180
[91] Garcia-Manyes S, Sanz F. Biochim. Biophys. Acta, 2010, 1798(4): 741—749
[92] Jung H, Robison A D, Cremer P S. J. Struct. Biol., 2009, 168(1): 90—94
[93] Wacklin H P. Curr. Opin. Colloid Interface Sci., 2010, 15(6): 445—454
[94] Kannisto K, Murtomaki L, Viitala T. Colloids Surf. B, 2011, 86(2): 298—304
[95] 马文宝 (Ma W B), 张立志 (Zhang L Z). 化工进展 (Chemical Industry and Engineering Progress), 2007, 26(11): 1538—1545
[96] 陈国明 (Chen G M). 汕头大学硕士论文 (Master Dissertation of Shantou University), 2004
[97] Ottova A L, Tien H T. Bioelectrochem. Bioenerg., 1997, 42(2): 141—152
[98] Vassilev P M, Kanazirska M P, Charamella L J, Dimitrov N V. Cancer Research, 1987, 47(3): 519—522
[99] Wang L G, Li Y H, Tien H T. Bioelectrochem. Bioenerg., 1995, 36(2): 145—147
[100] 沈树宝 (Shen S B), 陈英文(Chen Y W), 夏明芳 (Xia M F), 范俊 (Fan J), 邹敏 (Zou M), 胡永红 (Hu Y H). 工业水处理 (Industrial Water Treatment), 2003, 23(3): 40—43
[101] 杨宝学 (Yang B X), 赵雪俭 (Zhao X J). 中国病理生理杂志 (Chinese Journal of Pathophysiology), 2005, 21(8): 1619—1622
[102] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Nature, 2008, 452(7185): 301—310
[103] Lee K P, Arnot T C, Mattia D. J. Membr. Sci., 2011, 370(1/2): 1—22
[104] Kaufman Y, Berman A, Freger V. Langmuir, 2010, 26(10): 7388—7395
[1] Yujue Wang, Min Hu, Xiao Li, Nan Xu. Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere [J]. Progress in Chemistry, 2020, 32(5): 627-641.
[2] Dewen Han, Xintong Wang, Fashuai Ju, Yangjun Wang, Jialiang Feng, Wu Wang. Organosulfates in PM2.5 [J]. Progress in Chemistry, 2017, 29(5): 530-538.
[3] Li Xiangzi, Wei Xianwen. Fabrication, Formation Mechanisms and Potential Applications of Magnetic Metal Nanotubes [J]. Progress in Chemistry, 2012, 24(11): 2143-2157.
[4] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[5] Wang Cong, Liu Xiufeng**, Cui Ruili, Zhang Baoquan. Formation and Reparation of Defects in Zeolite Membranes [J]. Progress in Chemistry, 2008, 20(12): 1860-1867.