中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (05): 834-843 Previous Articles   Next Articles

• Review •

Techniques for Extraction and Separation of Metalloproteins

Peng Xiaomin1,2, Zhang Jinchao1*, Gao Yuxi2*, Chai Zhifang2   

  1. 1. College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 07100;
    2. CAS Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
PDF ( 965 ) Cited
Export

EndNote

Ris

BibTeX

Trace elements play a vital role in life activities. The abnormal level of trace elements, alteration of their speciations, changes of expression, location, structure and function of specific metalloenzyme and metalloprotein are often related to some pathological states, even are the key factors for pathogenesis. Thus the high-throughput analysis of the location, concentration, chemical form of metals in organism is an important subject in life science. In this review, various approaches to extraction and separation of metal-containing proteins are introduced and compared with emphasis on the application of different electrophoresis techniques to separation of metalloproteins. The influence of all these analysis processes to metals associated with proteins is also evaluated, along with the possible approaches to improvement of these processes.

Contents
1 Introduction
2 Methods for protein extraction
3 Methods for protein separation and metal element analysis
3.1 High-performance liquid chromatography(HPLC)
3.2 Capillary electrophoresis(CE)
3.3 Electrophoresis
4 Conclusion and prospects

CLC Number: 

[1] Gao Y X, Chen C Y, Chai Z F. J. Anal. At. Spectrom., 2007, 22: 856—866
[2] Finney L, Chishti Y, Khare T, Giometti C, Levina A, Lay P A, Vogt S. ACS Chem. Biol., 2010, 5(6): 577—587
[3] Finney L A, O'Halloran T V. Science, 2003, 300: 931—936
[4] Haraguchi H. J. Anal. At. Spectrom., 2004, 19: 5—14
[5] Lobinski R, Schaumloffel D, Szpunar J. Mass Spectrom. Rev., 2006, 25(2): 255—289
[6] Szpunar J. Analyst, 2005, 130: 442—465
[7] Ortega R. Metallomics, 2009, 1: 137—141
[8] Polatajko A, Azzolini M, Feldmann I, Stuezel T, Jakubowski N. J. Anal. At. Spectrom., 2007, 22: 878—887
[9] De Magalhǎes C S, Arruda M A Z. Talanta, 2007, 71: 1958—1963
[10] Sussulini A, Garcia G S, Mesko M F, Moraes D P, Flores E M M, Perez C A, Arruda M A Z. Microchim. Acta, 2007, 158: 173—180
[11] Szpunar J. Analyst, 2000, 125: 963—988
[12] 高愈希(Gao Y X),陈春英(Chen C Y),柴之芳(Chai Z F). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2008, 30(1): 1—16
[13] 厉欣(Li X), 陈学国(Chen X G), 孔亮(Kong L). 生命科学(Chinese Bulletin of Life Sciences), 2003, 15(2): 95—100
[14] 高明霞(Gao M X), 关霞(Guan X), 洪广峰(Hong G F), 张祥民(Zhang X M). 色谱(Chinese Journal of Charomatography), 2009, 27(5): 551—555
[15] 江桂斌(Jang G B),何滨(He B). 中国科学基金(Bulletin of National Natural Science Foundation of China), 2005, 3: 151—155
[16] Verbi F M, Arruda S C C, Rodriguez A P M, Perez C A, Arruda M A Z. J. Biochem. Biophys. Methods, 2005, 62: 97—109
[17] Kühbacher M, Weseloh G, Thomzig A, Bertelsmann H, Falkenberg G, Radtke M, Riesemeier H, Kyriakopoulos A, Beekes M, Behne D. X-Ray Spectrom., 2005, 34: 112—117
[18] Weseloh G, Kühbacher M, Bertelsmann H, Ozaslan M, Kyriakopoulos A, Knochel A. J. Radioanal. Nucl. Ch., 2004, 259(3): 473—477
[19] She Y M, Narindrasorasak S, Yang S Y, Spitale N, Roberts E A, Sarkar B. Mol. Cell Proteomics, 2003: 1306—1318
[20] Ma R, McLeod C W, Tomlinson K, Poole P K. Electrophoresis, 2004, 25(15): 2469—2477
[21] Guillaume B, Tastet L, Pecheyran C, Bouyssiere B, Donard O, Grimaud R, Lobinski R. J. Anal. At. Spectrom., 2005, 20: 493—499
[22] Polatajko A, Feldmann I, Hayen H, Jakubowski N. Metallomics, 2011, 3: 1001—1008
[23] Tomlinson K. Doctoral Dissertation of University of Sheffield. 2002
[24] Bertrand M, Weber G, Schoefs B. Trends Anal. Chem., 2003, 22: 254—262
[25] Garcia J S, de Magalhaes C S, Arruda M A Z. Talanta, 2006, 69: 1—15
[26] Gao Y X, Liu Y B, Chen C Y, Li B, He W, Huang Y Y, Chai Z F. J. Anal. At. Spectrom., 2005, 20: 473—475
[27] Homma-Takeda S, Shinyashiki M, Nakai I, Tohyama C, Kumagai Y, Shimojo N. Anal. Lett., 1996, 29(4): 601—611
[28] Gao Y X, Chen C Y, Chai Z F, Zhao J J, Liu J, Zhang P Q, He W, Huang Y Y. Analyst, 2002, 127: 1700—1704
[29] Li L N, Wu G, Sun J, Li B, Li Y F, Chen C Y, Chai Z F, Iida A, Gao Y X. J. Toxicol. Env. Heal. A, 2008, 71: 1266—1269
[30] Ballihaut G, Pecheyran C, Mounicou S, Preud'homme H, Grimaud R, Lobinski R. Trends Anal. Chem., 2007, 26(3): 183—190
[31] Chassaigne H, Chery C C, Bordin G, Vanhaecke F, Rodriguez A R. J. Anal. At. Spectrom., 2004, 19: 85—89
[32] Becker J S, Zoriy M V, Pickhardt C, Palomero-Gallagher N. Anal. Chem., 2005, 77: 3208—3216
[33] Becker S J, Boulyga S F, Becker J S, Pickhardt C, Damoc E, Przybylski M. Int. J. Mass Spectrom., 2003, 228: 985—997
[34] Becker J S, Zoriy M, Becker J S, Pickhardt C, Przybylski M. J. Anal. At. Spectrom., 2004, 19: 149—152
[35] Becker J S, Zoriy M, Przybylski M, Becker S. Int. J. Mass Spectrom., 2007, 261: 68—73
[36] Tastet L, Schaumloffel D, Lobinski R. J. Anal. At. Spectrom., 2008, 23: 309—317
[37] Santos F A, Lima P M, Neves R C F, Moraes P M, Pérez C A, Silva M O A, Arruda M A Z, Castro G R, de Magalhes Padilha P. Microchim. Acta, 2011, 73: 43—49
[38] Lima P M, Neves R C F, dos Santos F A, Pérez C A, da Silva M O A, Arruda M A Z, de Castro G R, Padilha P M. Talanta, 2010, 82: 1052—1056
[39] Becker S J, Zoriy M, Krause-Buchholz U, Becker J S, Pickhardt C, Przybylski M, Pompe W, Rodel G. J. Anal. At. Spectrom., 2004, 19: 1236—1243
[40] Chéry C C, Moens L, Cornelis R, Vanhaecke F. Pure Appl. Chem., 2006, 78(1): 91—103
[41] Becker J S, Zoriy M, Wu B, Matusch A, Becker J S. J. Anal. At. Spectrom., 2008, 23: 1275—1280
[42] Sevcenco A M, Krijger G C, Pinkse M W H, Verhaert P D E M, Hagen W R, Hagedoorn P L. J. Biol. Inorg. Chem., 2009, 14: 631—640
[43] Fan T W M, Pruszkowski E, Shuttleworth S. J. Anal. At. Spectrom., 2002, 17(12): 1621—1623
[44] Lustig S, Lampaert D, de Cremer K, de Kimpe G, Cornelis R, Schramel P. J. Anal. At. Spectrom., 1999, 14: 1357—1362
[45] Jiménez M S, Rodriguez L, Gomez M T, Castillo G. Talanta, 2010, 81: 241—247
[46] Raab A, Pioselli B, Munro C, Thomas-Oates J, Feldmann J. Electrophoresis, 2009, 30(2): 303—14
[47] Lustig S, de Kimpe J, Cornelis R, Schramel P, Michalke B. Electrophoresis, 1999, 20: 1627—1633
[48] Wang M, Feng W Y, Lu W W, Wang B, Zhu M T, Wang Y, Yuan H, Zhao Y L, Chai Z F. Anal. Chem., 2007, 79: 9128—9134
[49] Binet M R B, Ma R, McLeod C W, Poole R K. Anal. Biochem., 2003, 318: 30—38
[50] Marshall P, Heudi O, Bains S, Freeman H N, Abou-Shakra F, Reardon K. Analyst, 2002, 127: 459—461
[51] Wind M, Feldman I, Jakubowski N, Lehman W D. Electrophoresis, 2003, 24: 1276—1280
[1] Yingwu Lin. Rational Design of Artificial Metalloenzymes: Case Studies in Myoglobin [J]. Progress in Chemistry, 2018, 30(10): 1464-1474.
[2] Wu Liang, Mu Chunlei, Zhang Qunlin*, Lü Chen, Zhang Xiaoyue. Nanoparticle-Involved Luminol Chemiluminescence and Its Analytical Applications [J]. Progress in Chemistry, 2013, 25(07): 1187-1197.
[3] Li Gaopeng, Zhang Yan*. Progress in Bioinformatics Studies on Essential Metals [J]. Progress in Chemistry, 2013, 25(04): 446-456.
[4] Xu Caihong, Zhao Yaqin, Yang Binsheng*. Mediating Roles of Metal Ions in the Structures and Functions of Metalloproteins [J]. Progress in Chemistry, 2013, 25(04): 520-529.
[5] Gao Chengyao, Chang Ming, Li Xiaowei, Li Cuiping. Electroanalytical Applications of Boron Doped Diamond Electrode [J]. Progress in Chemistry, 2011, 23(5): 951-962.
[6] . Recent Advances in Single-Cell Analysis Using Capillary Electrophoresis [J]. Progress in Chemistry, 2010, 22(11): 2215-2223.
[7] Jiang Ping Qu Feng Tan Xin Li Qin Geng Lina Deng Yulin. The Application of Microfluidic Chip Electrophoresis in Biomolecular Interaction Research [J]. Progress in Chemistry, 2009, 21(09): 1895-1904.
[8] Geng Lina Jiang Ping Xu Jiandong Che Baoquan Qu Feng Deng Yulin. Applications of Nanotechnology in Capillary Electrophoresis and Microfluidic Chip Electrophoresis Biomolecular Separations [J]. Progress in Chemistry, 2009, 21(09): 1905-1921.
[9] Qu Feng Liu Yun Ren Xiaomin Zhao Xinying Zhang Jinghua. Application of Capillary Electrophoresis in Aptamers Study and Aptamers Selection [J]. Progress in Chemistry, 2009, 21(0708): 1576-1582.
[10] Yan Ya Li Jinru Yang Yun. Synthesis of Spherical Monodisperse Gold Nanoparticles [J]. Progress in Chemistry, 2009, 21(05): 971-981.
[11] . Detection and Quantification of DNA Adducts [J]. Progress in Chemistry, 2009, 21(0203): 503-513.
[12] Wang Yurong|Chen Hengwu**. Microchip Capillary Electrophoresis with Amperometric Detection [J]. Progress in Chemistry, 2009, 21(01): 200-209.
[13] Cai Ying1 Yan Zhihong2 Zi Min1 Ding Hui1 Yuan Liming1**

. Purification of Carbon Nanotubes Using Chromatography Methods [J]. Progress in Chemistry, 2008, 20(09): 1391-1395.
[14]

Zhang Ying|Huang Linjuan|Wang Zhongfu**

. Techniques for Staining Glycoprotein on Gel Electrophoresis or Electroblotting [J]. Progress in Chemistry, 2008, 20(0708): 1158-1164.
[15]

Xu Yi1,2,3** Shen Jiwei1,2 Lu Jiali1,2 Wen Zhiyu1,3

. Protein/peptides Separation by Two-dimensional Microfluidic chip Electrophoresis [J]. Progress in Chemistry, 2008, 20(05): 754-761.