中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (05): 823-833 Previous Articles   Next Articles

• Review •

Rhodamine-Based Fluorescent Probes for Cations

Li Junbo, Hu Qihui, Zeng Yang, Yu Xianglin, Pan Zhiquan   

  1. Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China
  • Received: Revised: Online: Published:
PDF ( 1510 ) Cited
Export

EndNote

Ris

BibTeX

As one kind of the xanthenes, rhodamine dyes have excellent photophysical properties, such as long absorption and emission wavelengths elongated to visible region, high fluorescence quantum yield, and large absorption coefficient, etc. Therefore, rhodamine-based dyes have become one of the perfect chromophores for making fluorescent probes. In the paper, the recent progress in the studies on rhodamine-based fluorescent probes for metal cations are reviewed. Especially systematically discuss about the rhodamine-based fluorescent probes for copper ion, mercury ion and iron ion that are based on the mechanism of screw amide ring “off-on”, the mechanism of fluorescence resonance energy transfer and the mechanism of photoinduced electron transfer. The structure, detecting level and applications are discussed in detail. Moreover, the problems and developing trends with this kind of fluorescent probe have also been discussed.

Contents
1 Introduction
2 Selective probes for copper ion
3 Selective probes for mercury ion
3.1 Probe with sulfur atoms coordination
3.2 Probe without sulfur atoms coordination
3.3 Probe with mercury ion induced chemical reactions
4 Selective probes for iron ion
5 Selective probes for other metal ions
6 Conclusions and outlook

CLC Number: 

[1] Boening D W. Chemosphere, 2000, 40: 1335—1351
[2] Silva J J R F, Williams R J P. The Biological Chemistry of Elements: The Inorganic of life(second ed). New York: Oxford University Press, 2001: 315—335
[3] Nendza M, Herbst T, Kussatz C. Chemosphere, 1997, 35(9): 1875—1885
[4] Lin W Y, Yuan L, Cao X W, Tan W, Feng Y M. Eur. J. Org. Chem., 2008, 29: 4981—4987
[5] Soylak M, Unsal Y E. Food Chem. Toxicol., 2010, 48(6): 1511—1515
[6] Aydin F A, Soylak M. J. Hazard. Mater., 2010, 173(1/3): 669—674
[7] Das S, Vulpe C, Levinson B, Whiteny S, Gitschier J, Packman S. J. Nat. Genet., 1993, 3(1): 7—13
[8] Dujols V, Ford F, Czarnik A W. J. Am. Chem. Soc., 1997, 119(31): 7386—7387
[9] Xiang Y, Tong A J, Jin P Y, Yong J. Org. Lett., 2006, 8(13): 2863—2866
[10] Zhou Y, Wang F, Kim Y, Kim S J, Yoon Y. Org. Lett., 2009, 11(19): 4442—4445
[11] Lee M H, Kim H J, Yoon S, Park N, Kim S J. Org. Lett., 2008, 10(2): 213—216
[12] Zhang J F, Zhou Y, Yoon J, Kim Y, Kim S J, Kim J S. Org. Lett., 2010, 12(17): 3852—3855
[13] Chen X Q, Jou M J, Lee H Y, Kou S, Lim J, Nam S W, Park S, Kim K M, Yoon J. Sensor Actuat B-Chem., 2009, 137: 597—602
[14] Zhang X, Shiraishi Y, Hirai K. Org. Lett., 2007, 9(24): 5039—5042
[15] Zhao Y, Zhang X B, Han Z X, Qiao L, Li C Y, Jian L X, Shen G L, Yu R Q. Anal. Chem., 2009, 81(16): 7022—7030
[16] Yu F B, Zhang W S, Li P, Xing Y L, Tong L L, Ma J P, Tang B. Analyst, 2009, 134: 1826—1833
[17] Yu M X, Shi M, Chen Z G, Li F Y, Li X X, Gao Y H, Xu J, Yang H, Zhou Z G, Yi T, Huang C H. Chem. Eur. J., 2008, 14(23): 6892—6900
[18] Liu J L, Li C Y, Li F Y. J. Mater. Chem., 2011, 21: 7175—7181
[19] Li J B, Yu X L, Pan Z Q, Gao Y, Zeng Y, Hu Q H, Guo J. Sensor Lett., 2011, 9(4): 1331—1341
[20] Gutknecht J. J. Membr. Biol., 1981, 61: 61—66
[21] Clarkson T W, Magos L, Myers G J. New Engl. J. Med., 2003, 349(18): 1731—1737
[22] Von Burg R. J. Appl. Toxicol., 1995, 15(6): 483—493
[23] Ziemba S E, McCabe M J, Rosenspire A. J. Toxicol. Appl. Pharmacol., 2005, 206: 334—342
[24] Guo T L, Miller M A, Shapiro I M. J. Toxicol. Appl. Pharmacol., 1998, 153: 250—257
[25] Renzoni A, Zino F, Franchi E. Environ. Res., 1998, 77(2): 68—72
[26] Bolger P M, Schwetz B A. New Engl. J. Med., 2002, 347(22): 1735—1736
[27] Harris H H, Pickering I J, George G N. Science, 2003, 301(5637): 1203—1203
[28] Grandjean P, Weihe P, White R F, Debes F. Environ. Res., 1998, 77(2): 165—172
[29] Zheng H, Qian Z H, Xu L, Yuan F F, Lan L D, Xu J G. Org. Lett., 2006, 8(5): 859—861
[30] Zhan X Q, Qian Z H, Zheng H, Su B Y, Lan Z, Xu J G. Chem. Commun., 2008, 1859—1861
[31] Chen X Q, Nam C S, Jou M J, Kim Y, Kim S J, Park S, Yoon J. Org. Lett., 2008, 10(22): 5235—5238
[32] Huang J H, Xu Y F, Qian X H. J. Org. Chem., 2009, 74(5): 2167—2170
[33] Huang W, Song C X, He C, Lv G J, Hu X Y, Zhu X, Duan C Y. Inorg. Chem., 2009, 48(12): 5061—5072
[34] Suresh M, Mishra S, Mishra S K, Suresh E, Mandal A K, Shrivastav A, Das A. J. Org. Chem., 2009, 11(13): 2740—2743
[35] Wang H G, Li Y P, Xu S F, Li Y C, Zhou C, Fei X L, Sun L, Zhang C Q, Li Y X, Yang Q B, Xu X Y. Org. Biomol. Chem., 2011, 9: 2850—2855
[36] Wu D Y, Huang W, Duan C Y, Lin Z H, Meng Q J. Inorg. Chem., 2007, 46(5): 1538—1540
[37] Lee M H, Wu J S, Lee J W, Jung J H, Kim J S. Org. Lett., 2007, 9(13): 2501—2504
[38] Shiraishi Y, Sumiya S, Kohno Y, Hirai T. J. Org. Chem., 2008, 73(21): 8571—8574
[39] Yang H, Zhou Z G, Huang K W, Yu M X, Li F Y, Yi T, Huang C H. Org. Lett., 2007, 9(23): 4729—4732
[40] Wu D Y, Huang W, Lin Z H, Duan C Y, He C, Wu S, Wang D H. Inorg. Chem., 2008, 47(16): 7190—7201
[41] Suresh M, Shrivastav A, Mishra S, Serush E, Das A. Org. Lett., 2008, 10(14): 3013—3016
[42] Yuan M J, Zhou W D, Liu X F, Zhu M, Li J B, Yin X D, Zheng H Y, Zuo Z C, Ouyang C B, Liu H B, Li Y L, Zhu D B. J. Org. Chem., 2008, 73(13): 5008—5014
[43] Kumar M, Kumar N, Bhalla V, Singh H, Sharma P R, Kaur T. Org. Lett., 2011, 13(6): 1422—1425
[44] Yang H K, Yook K L, Tae J. J. Am. Chem. Soc., 2005, 127(48): 16760—16761
[45] Ko S K, Yang Y K, Tae J, Shin I. J. Am. Chem. Soc., 2006, 128(43): 14151—14155
[46] Wu J S, Hwang I C, Kim K S, Kim J S. Org. Lett., 2007, 9(5): 907—910
[47] Zhang X L, Xiao Y, Qian X H. Angew. Chem. Int. Ed., 2008, 47: 8025—8029
[48] Shang G Q, Gao X, Chen M X, Zheng H, Xu J G. J. Fluoresc., 2008, 18: 1187—1192
[49] Du J J, Fan J L, Peng X J, Sun P P, Wang J Y, Li H L, Sun S G. Org. Lett., 2010, 12(3): 476—479
[50] Wolfbeis O S. J. Mater. Chem., 2005, 15(27/28): 2657—2669
[51] Meneghini R. Free Radic. Biol. Med., 1997, 23(5): 783—792
[52] Aisen P, Wessling R M, Leibold E A. Curr. Opin. Chem. Biol., 1999, 3(2): 200—206
[53] Eisenstein R S. Annu. Rev. Nutr., 2000, 20: 627—662
[54] Rouault T A. Nat. Chem. Biol., 2006, 2(8): 406—414
[55] Touati D. Arch. Biochem. Biophys., 2000, 373(1): 1—6
[56] Cairo G, Pietrangelo A. Biochem. J., 2000, 352(Pt 2): 241—250
[57] Beutler E, Felitti V, Gelbart T, Ho N. Drug Metab. Dispos., 2001, 29(4): 495—499
[58] Ghaedi M, Shokrollahi A, Mehrnoosh R, Raziyeh O, Soylak M. Cent. Eur. J. Chem., 2008, 6(3): 488—496
[59] Bae S, Tae J. Tetrahedron Lett., 2007, 48(31): 5389—5392
[60] Xiang Y, Tong A. Org. Lett., 2006, 8(8): 1549—1552
[61] Mao J, Wang L N, Dou W, Tang X L, Yan Y, Liu W S. Org. Lett., 2007, 9(22): 4567—4570
[62] Zhang M, Gao Y H, Li M Y, Yu M X, Li F Y, Li L, Zhu M W, Zhang J P, Yi T, Huang C H. Tetrahedron Lett., 2007, 48: 3709—3712
[63] Zhang L Z, Fan J L, Peng X J. Spectrochim. Acta Part A, 2009, 73: 398—402
[64] Dong L, Wu C, Zeng X, Mu L, Xue S F, Tao Z, Zhang J X. Sensor Actuat. B-Chem., 2010, 145: 433—437
[65] Weerasinghe A J, Schmiesing C, Varaganti S, Ramakrishna G, Sinn E. J. Phys. Chem. B, 2010, 114(29): 9413—9419
[66] 张玲菲(Zhang L F), 赵江林(Zhao J L), 曾晞(Zeng X), 牟兰(Mou L), 薛赛风(Xue S F), 陶朱(Tao Z), 卫钢(Wei G). 无机化学(Chinese J. Inorg. Chem.), 2010, 26(10): 1976—1803
[67] 张玲菲(Zhang L F), 郑相勇(Zheng X Y), 曾晞(Zeng X), 牟兰(Mou L), 薛赛风(Xue S F), 陶朱(Tao Z), 张建新(Zhang J X). 无机化学(Chinese J. Inorg. Chem.), 2010, 26(7): 1183—1188
[68] Li J B, Hu Q H, Yu X L, Zeng Y, Cao C C, Liu X W, Guo J, Pan Z Q. J. Fluoresc., 2011, 21: 2005—2013
[69] Kwon J Y, Jang Y J, Lee Y J, Kim K M, Seo M S, Nam W, Yoon J. J. Am. Chem. Soc., 2005, 127(28): 10107—10111
[70] Huang K W, Yang H, Zhou Z G, Yu M X, Li F Y, Gao X, Yi T, Huang C H. Org. Lett., 2008, 10(12): 2557—2560
[71] Zhou Z G, Yu M X, Yang H, Huang K W, Li F Y, Yi T, Huang C H. Chem. Commun., 2008, 3387—3389
[72] Yang Y K, Lee S, Tae J. Org. Lett., 2009, 11(24): 5610—5613
[73] Egorova O A, Seo H, Chatterjee A, Ahn K H. Org. Lett., 2010, 12(3): 401—403
[74] Chatterjee A, Santra M, Won N, Kim S, Kim J K, Kim S B, Ahn K H. J. Am. Chem. Soc., 2009, 131(6): 2040—2041
[75] Jun M E, Ahn K H. Org. Lett., 2010, 12(12): 2790—2793
[76] Kim H, Lee S, Lee J, Tae J. Org. Lett., 2010, 12(22): 5342—5345
[77] Du P W, Lippard S. J. Inorg. Chem., 2010, 49(23): 10753—10755
[1] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[2] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[3] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[4] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[5] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[6] Zhang Yewen, Yang Qingqing, Zhou Cefeng, Li Ping, Chen Runfeng. The Photophysical Behavior and Performance Prediction of Thermally Activated Delayed Fluorescent Materials [J]. Progress in Chemistry, 2022, 34(10): 2146-2158.
[7] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[8] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[9] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[10] Yang Wang, Po Hu, Shuai Zhou, Jiajun Fu. Anticounterfeiting and Security Applications of Rare-Earth Upconversion Nanophosphors [J]. Progress in Chemistry, 2021, 33(7): 1221-1237.
[11] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[12] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[13] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[14] Jiawei Liu, Jing Wang, Qi Wang, Quli Fan, Wei Huang. Applications of Activatable Organic Photoacoustic Contrast Agents [J]. Progress in Chemistry, 2021, 33(2): 216-231.
[15] Yunxue Xu, Renfu Liu, Kun xu, Zhifei Dai. Fluorescent Probes for Intraoperative Navigation [J]. Progress in Chemistry, 2021, 33(1): 52-65.