中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (05): 801-809 Previous Articles   Next Articles

• Review •

Conversion of Biomass into Levulinate Esters as Novel Energy Chemicals

Peng Lincai1, Lin Lu2*, Li Hui1   

  1. 1. State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China;
    2. School of Energy Research, Xiamen University, Xiamen 361005, China
  • Received: Revised: Online: Published:
PDF ( 1853 ) Cited
Export

EndNote

Ris

BibTeX

Biomass is the only renewable resources on the earth that can derive liquid fuel and fine chemicals to replace the petroleum-based chemicals. In recent years, the development of bioenergy concerning the synthesis of levulinate esters from biomass via chemical/catalytic process has attracted more and more concerns, and extensive research is being carried out worldwide. Levulinate esters, like methyl levulinate, ethyl levulinate, and butyl levulinate, are a kind of important intermediates and energy chemicals having high reactivity and widespread application in many fields. Up to now, there are four developed potential pathways for the synthesis of levulinate esters from biomass conversion, including the direct acid-catalyzed alcoholysis of biomass, the esterification of levulinic acid that from hydrolysis of biomass, the alcoholysis of 5-(chloromethyl)furfural derived from biomass, and the alcoholysis of furfuryl alcohol that from hydrogenation of furfural. In this review, the chemical reaction process and recent research progress for the above four pathways are introduced. The characteristic and development tendency of these pathways are reviewed from the production process, catalytic system and economic feasibility. Based on the present research situation, the technology and engineering barriers for the conversion of biomass to levulinate esters in commercial scales are analyzed and discussed, and the future research trend in the field is prospected.

Contents
1 Introduction
2 Direct acid-catalyzed alcoholysis of biomass for levulinate esters production
2.1 Alcoholysis process of cellulosic biomass
2.2 Catalytic systems
2.3 Kinetics of biomass alcoholysis
2.4 Side reaction of inter-molecular dehydration of alcohol
3 Levulinate ester synthesis from biomass via levulinic acid
3.1 Synthesis route
3.2 Esterification of levulinic acid
4 Levulinate ester synthesis from biomass via 5-(chloromethyl)furfural
4.1 Synthesis route
4.2 Preparation of 5-(chloromethyl)furfural
4.3 Alcoholysis of 5-(chloromethyl)furfural
5 Levulinate ester synthesis from biomass via furfural and then furfuryl alcohol
5.1 Synthesis route
5.2 Alcoholysis of furfuryl alcohol
6 Conclusion and outlook

CLC Number: 

[1] Naik S N, Goud V V, Rout P K, Dalai A K. Renew. Sustain. Energy Rev., 2010, 14: 578—597
[2] 林鹿(Lin L), 何北海(He B H), 孙润仓(Sun R C), 胡若飞(Hu R F). 化学进展(Progress in Chemistry), 2007, 19(7/8): 1206—1216
[3] 孙绍晖(Sun S H), 孙培勤(Sun P Q), 马国杰(Ma G J), 衡明星(Heng M X), 陈俊武(Chen J W). 化学进展(Progress in Chemistry), 2010, 22(9): 1844—1851
[4] Regalbuto J R. Science, 2009, 325: 822—824
[5] Van de Vyver S, Geboers J, Jacobs P A, Sels B F. ChemCatChem, 2011, 3: 82—94
[6] Rowley R L, Wilding W V, Oscarson J L, Zundel N A, Marshall T L, Daubert T E, Danner R P. DIPPR Data Compilation of Pure Compound Properties. New York: Design Institute for Physical Properties AIChE, 2004
[7] Windom B C, Lovestead T M, Mascal M, Nikitin E B, Bruno T J. Energ. Fuel, 2011, 25: 1878—1890
[8] Joshi H, Moser B R, Toler J, Smith W F, Walker T. Biomass Bioenerg., 2011, 35: 3262—3266
[9] Olson E S, Kjelden M R, Schlag A J, Sharma R K. ACS Symp. Ser., 2001, 784: 51—63
[10] Hayes D J. Catal. Today, 2009, 145: 138—151
[11] Gürbüz E I, Alonso D M, Bond J Q, Dumesic J A. ChemSusChem, 2011, 4: 357—361
[12] Hu X, Li C Z. Green Chem., 2011, 13: 1676—1679
[13] Garves K. J. Wood Chem. Technol., 1988, 8: 121—134
[14] Garves K. DE 3621517 A1, 1988
[15] Tarabanko V E, Chernyak M Y, Stukalova Y S, Smirnova M A. Khimiya Rastitel'nogo Syr'ya, 2004, 2: 31—37
[16] Bianchi D, Romano A M. US 0160479A1, 2011
[17] Tominaga K, Mori A, Fukushima Y, Shimada S, Sato K. Green Chem., 2011, 13: 810—812
[18] Peng L C, Lin L, Li H, Yang Q L. Appl. Energ., 2011, 88: 4590—4596
[19] Peng L C, Lin L, Zhang J H, Shi J B, Liu S J. Appl. Catal. A, 2011, 397: 259—265
[20] Deng W P, Liu M, Zhang Q H, Tan X S, Wang Y. Chem. Commun., 2010, 46: 2668—2670
[21] Rataboul F, Essayem N. Ind. Eng. Chem. Res., 2011, 50: 799—805
[22] Saravanamurugan S, van Buu O N, Riisager A. ChemSusChem, 2011, 4: 723—726
[23] 吴晓宇(Wu X Y), 吕秀阳(Lü X Y), 陈天(Chen T), 陈樟女(Chen Z N). 化工学报(CIESC Journal), 2010, 61(10): 2585—2589
[24] Mascal M, Nikitin E B. ChemSusChem, 2010, 3: 1349—1351
[25] Le van Mao R, Zhao Q, Dima G, Petraccone D. Catal. Lett., 2011, 141: 271—276
[26] 彭红(Peng H), 刘玉环(Liu Y H), 张锦胜(Zhang J S), 阮榕生(Ruan R S). 化工进展(Chemical Industry and Engineering Progress), 2009, 28(12): 2237—2241
[27] Bart H J, Reidetschlger J, Schatka K, Lehmann A. Ind. Eng. Chem. Res., 1994, 33: 21—25
[28] Peng L C, Lin L, Zhang J H, Zhuang J P, Zhang B X, Gong Y. Molecules, 2010, 15: 5258—5272
[29] Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12: 1493—1513
[30] Van de Vyver S, Thomas J, Geboers J, Keyzer S, Smet M, Dehaen W, Jacobs P A, Sels B F. Energ. Environ. Sci., 2011, 4: 3601—3610
[31] 何柱生(He Z S), 赵立芳(Zhao L F). 化学研究与应用(Chemical Research and Application), 2001, 13(5): 537—539
[32] 王树清(Wang S Q), 高崇(Gao C), 李亚芹(Li Y Q). 上海化工(Shanghai Chemical Industry), 2005, 30(4): 14—16
[33] Dharne S, Bokade V V. J. Nat. Gas Chem., 2011, 20: 18—24
[34] Yadav G D, Borkar I V. Ind. Eng. Chem. Res., 2008, 47: 3358—3363
[35] Lee A, Chaibakhsh N, Rahman M B A, Basri M, Tejo B A. Ind. Crop. Prod., 2010, 32: 246—251
[36] Mascal M, Nikitin E B. Angew. Chem. Int. Ed., 2008, 47: 7924—7926
[37] Mascal M, Nikitin E B. Green Chem., 2010, 12: 370—373
[38] Klaas M R G, Schne H. ChemSusChem, 2009, 2: 127—128
[39] Mascal M, Nikitin E B. ChemSusChem, 2009, 2: 859—861
[40] Brasholz M, von Knel K, Hornung C H, Saubern S, Tsanaktsidis J. Green Chem., 2011, 13: 1114—1117
[41] Lange J P, van de Graaf W D, Haan R J. ChemSusChem, 2009, 2: 437—441
[42] Zeitsch K J. The Chemistry and Technology of Furfural and Its Many By-products (Ed. Zeitsch K J). Amsterdam: Elsevier, 2000
[43] Li H X, Zhang S Y, Luo H S. Mater. Lett., 2004, 58: 2741—2746
[44] Hao X Y, Zhou W, Wang J W, Zhang Y Q, Liu S X. Chinese J. Catal., 2005, 26: 935—937
[45] Guigo N, Mija A, Vincent L, Sbirrazzuoli N. Phys. Chem. Chem. Phys., 2007, 9: 5359—5366
[46] Bertarione S, Bonino F, Cesano F, Jain S, Zanetti M, Scarano D, Zecchina A. J. Phys. Chem. B, 2009, 113: 10571—10574
[47] Khusnutdinov R I, Baiguzina A R, Smirnov A A, Mukminov R R, Dzhemilev U M. Russ. J. Appl. Chem., 2007, 80: 1687—1690
[48] Zhang Z H, Dong K, Zhao Z B. ChemSusChem, 2011, 4: 112—118
[49] Kim J S, Lee Y Y, Torget R W. Appl. Biochem. Biotech., 2001, 91/93: 331—340
[50] Ojumu T V, AttahDaniel B E, Betiku E, Solomon B O. Biotechnol. Bioproc. Eng., 2003, 8: 291—293
[51] Zhuang X S, Qi W, Yuan Z H, Wang Q, Tan X S. J. Biobased Mater. Bio., 2010, 4: 35—39
[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[3] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
[4] Lihua Qian, Guojun Lan, Xiaoyan Liu, Qingfeng Ye, Ying Li. Heterogeneous Catalysts for Biomass-Based Molecules Aqueous-Phase Catalytic Hydrogenation [J]. Progress in Chemistry, 2019, 31(8): 1075-1085.
[5] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[6] Jiawei Xie, Xiangwen Zhang, Junjian Xie, Genkuo Nie, Lun Pan, Jijun Zou*. Synthesis of High-Density Jet Fuels from Biomass [J]. Progress in Chemistry, 2018, 30(9): 1424-1433.
[7] Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*. Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose [J]. Progress in Chemistry, 2017, 29(10): 1273-1284.
[8] Wei Junnan, Tang Xing, Sun Yong, Zeng Xianhai, Lin Lu. Applications of Novel Biomass-Derived Platform Molecule γ-Valerolactone [J]. Progress in Chemistry, 2016, 28(11): 1672-1681.
[9] Tang Xing, Hu Lei, Sun Yong, Zeng Xianhai, Lin Lu. Conversion of Biomass to Novel Platform Chemical γ-Valerolactone by Selective Reduction of Levulinic Acid [J]. Progress in Chemistry, 2013, 25(11): 1906-1914.
[10] Guo Xiao, Yan Yani, Zhang Yahong, Tang Yi. Heterogeneously Catalytic Transformation of Biomass-Derived Sugars [J]. Progress in Chemistry, 2013, 25(11): 1915-1927.
[11] Zhang Jiaren, Deng Tianyin, Liu Haichao*. Catalytic Production of Liquid Biofuels from Triglyceride Feedstocks and Lignocellulose [J]. Progress in Chemistry, 2013, 25(0203): 192-208.
[12] Chen Hongzhang, Peng Xiaowei. Steam Explosion Technology Applied to High-Value Utilization of Herb Medicine Resources [J]. Progress in Chemistry, 2012, (9): 1857-1864.
[13] Hu Lei, Sun Yong, Lin Lu. Ionic Liquids-Mediated Formation of 5-Hydroxymethylfurfural [J]. Progress in Chemistry, 2012, 24(04): 483-491.
[14] Zhang Jianming, Zhai Shangru, Huang Dezhi, Zhai Bin, An Qingda. Solid Heteropolyacids (HPAs) in Hydrolytic Conversion of Biomass [J]. Progress in Chemistry, 2012, 24(0203): 433-444.
[15] Hu Suqin, Zhang Xiaodong, Xu Min, Sun Li. Application of Ionic Liquids in Biomass Utilization [J]. Progress in Chemistry, 2011, 23(4): 731-738.