中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (05): 747-756 Previous Articles   Next Articles

• Review •

Application of Metal-Organic Frameworks in Olefin Oxidation

Li Linqing1,2, Lv Ying1, Li Jun1, Dong Xiaoli2, Gao Shuang1*   

  1. 1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
    2. School of Chemical Engineering and Materials, Dalian Polytechnic University, Dalian 116034, China
  • Received: Revised: Online: Published:
PDF ( 1078 ) Cited
Export

EndNote

Ris

BibTeX

As a new class of porous solids, metal-organic frameworks (MOFs) have attracted a great deal of interests of chemists in the world due to their unique properties, such as the high specific surface area, tailoring structure properties and 100% utilization of exposed metal ions. The chemical and structural versatility of such materials makes them potentially candidates for applications in catalysis. In this review, we focus our attention on olefins oxidation using MOF as catalysts. Three classes of MOF catalysts are active site at the inorganic nodes on the MOF, active site at the organic or pseudo-organic linkers, and MOF-supported active specie. The applications of the three classes of MOF catalysts on the olefins oxidation are discussed in detail.

Contents
1 Introduction
2 Catalysis by metal nodes on the MOF
2.1 Catalysis by Fe-MOF
2.2 Catalysis by Cu-MOF
2.3 Catalysis by Ni-MOF
2.4 Catalysis by Ln-MOF
2.5 Catalysis by Co-MOF
2.6 Catalysis by V-MOF
3 Catalysis by homogeneous catalysts incorporated as MOF struts at the organic or pseudo-organic linkers
3.1 Metalloporphyrins
3.2 Salen complexes
4 Catalysis by MOF-supported metals or clusters
5 Conclusions and Outlook

CLC Number: 

[1] Yaghi O M, Keeffe M O, Ockwig N W, Chae H K, Eddaoudi M, Kim J. Nature, 2003, 423: 705—714
[2] James S L. Chem. Soc. Rev., 2003, 32: 276—288
[3] Kitagawa S, Kitaura R, Noro S. Angew. Chem. Int. Ed., 2004, 43: 2334—2337
[4] Ferey G. Chem. Soc. Rev., 2008, 37: 191—214
[5] 刘丽丽(Liu L L), 张鑫(Zhang X), 徐春明(Xu C M). 化学进展(Progress in Chemistry), 2010, 22(11): 2089—2098
[6] 魏文英(Wei W Y), 方键 (Fang J), 孔海宁(Kong H N), 韩金玉(Han J Y), 常贺英(Chang H Y). 化学进展(Progress in Chemistry), 2005, 17(6): 1110—1115
[7] Dhakshinamoorthy A, Alvaro M, Garcia H. ACS Catal., 2011, 836—840
[8] Brown K, Zolezzi S, Aguirre P, Venegas-Yazigi D, Paredes-Garcia V, Baggio R, Novak M A, Spodine E. Dalton Trans., 2009, 1422—1427
[9] Jiang D, Mallat T, Meier D M, Urakawa A, Baiker A. J. Catal., 2010, 270(1): 26—33
[10] Lee J S, Halligudi S B, Jang N H, Hwang D W, Chang J S, Hwang Y K. Bull. Korean. Chem. Soc., 2010, 31(6): 1489—1495
[11] Sen R, Koner S, Hazra D K, Helliwell M, Mukherjee M. Eur. J. Inorg. Chem., 2011, (2): 241—248
[12] Tonigold M, Lu Y, Bredenkoetter B, Rieger B, Bahnmueller S, Hitzbleck J, Langstein G, Volkmer D. Angew. Chem. Int. Ed., 2009, 48(41): 7546—7550
[13] Tonigold M, Lu Y, Mavrandonakis A, Puls A, Staudt R, Mollmer J, Sauer J, Volkmer D. Chem. Eur. J., 2011, 17: 8671— 8695
[14] Lu Y, Tonigold M, Bredenktter B, Volkmer D, Hitzbleck J, Langstein G. Z. Anorg. Allg. Chem., 2008, 634 (12/13): 2411—2417
[15] Zhang A, Li L, Li J, Zhang Y, Gao S. Catal. Commun., 2011, 12 (13): 1183—1187
[16] Leus K, Muylaert I, Vandichel M, Marin G B, Waroquier M, van Speybroeck V, van der Voort P. Chem. Commun., 2010, 5085—5087
[17] Suslick K S, Bhyrappa P, Chou J H, Kosal M E, Nakagaki S, Smithenry D W, Wilson S R. Acc. Chem. Res., 2005, 38(4): 283—291
[18] Farha O K, Shultz A M, Sarjeant A A, Nguyen S T, Hupp J T. J. Am. Chem. Soc., 2011, 133(15): 5652—5655
[19] Xie M H, Yang X L, Wu C D. Chem. Commun., 2011, 5521—5523
[20] Song F J, Wang C, Falkowski J M, Ma L Q, Lin W B. J. Am. Chem. Soc., 2010, 132(43): 15390—15398
[21] Cho S H, Ma B, Nguyen S T, Hupp J T, Albrecht-Schmitt T E. Chem. Commun., 2006, 2563—2565
[22] Shultz A M, Farha O K, Adhikari D, Sarjeant A A, Hupp J T, Nguyen S T. Inorg. Chem., 2011, 50(8): 3174—3176
[23] Shultz A M, Sarjeant A A, Farha O K, Hupp J T, Nguyen S T. J. Am. Chem. Soc., 2011, 133(34): 13252—13255
[24] Bhattacharjee S, Yang D A, Ahn W S. Chem. Commun., 2011, 47(12): 3637—3639
[25] Maksimchuk N V, Timofeeva M N, Melgunov M S, Shmakov A N, Chesalov Y A, Dybtsev D N, Fedin V P, Kholdeeva O A. J. Catal., 2008, 257(2): 315—323
[26] Maksimchuk N V, Kovalenko K A, Arzumanov S S, Chesalov Y A, Melgunov M S, Stepanov A G, Fedin V P, Kholdeeva O A. Inorg. Chem., 2010, 49(6): 2920—2930
[27] Mueller M, Hermes S, Kaehler K, van den Berg M W E, Muhler M, Fischer R A. Chem. Mater., 2008, 20(14): 4576—4587
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[11] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[12] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[13] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[14] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[15] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.