中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (05): 737-746 Previous Articles   Next Articles

Special Issue: 计算化学

• Review •

Computer Simulation Studies on Apatite Crystal and Its Interaction with Biologic Molecules

Shen Juan, Jin Bo, Jiang Qiying, Zhong Guoqing, Huo Jichuan   

  1. Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
  • Received: Revised: Online: Published:
PDF ( 1828 ) Cited
Export

EndNote

Ris

BibTeX

Biological apatite is the main inorganic mineral component of animal and human bone and tooth enamel, moreover apatite mineral composition and structure affect on the bone and tooth enamel mechanical strength and physiological behavior. The structure of hydroxyapatite (HAP) has proved more difficult to resolve, two different hydroxyl arrangements may occur in HAP resulting in hexagonal and monoclinic structures. Extensive isomorphic substitutions may greatly affect the properties of this mineral. In the paper, computational methods are well placed to calculate at the atomic level the geometry and relative energies of the various possible hydroxy groups in apatite, and they have been employed to study the uptake and distribution of small molecule or biomacromolecule in the hydroxyapatite. Application of computer simulation at the atomic level to investigate apatites, especially HAP, is anticipated to provide a deeper understanding of crystal chemistry and interaction with biomacromolecules. These results offer a more comprehensive investigation of bio-apatite and perspective applications.

Contents
1 Introduction
2 Applications of computer simulation to the apatite crystal
3 Applications of computer simulation to the apatite substitution
4 The interaction of apaptite and other molecules or ions
4.1 The interaction of apaptite and water molecules
4.2 The interaction of apaptite and haloid ions
4.3 The interaction of apaptite and citric acid molecules
4.4 The interaction of apaptite and biologic molecules
5 Conclusions and Outlook

CLC Number: 

[1] Dorozhkin S V, Epple M. Chem. Inform., 2002, 33: 267—267
[2] Narasaraju T S B, Phebe D E. J. Mater. Sci., 1996, 31: 1—21
[3] Dorozhkin S V, Epple M. Angew. Chem. Int. Ed., 2002, 41: 3130—3146
[4] Cho G, Wu Y, Ackerman J L. Science, 2003, 300: 1123—1127
[5] Loong C K, Rey C, Kuhn L T, Combes C, Wu Y, Chen S H, Glimcher M J. Bone, 2000, 26: 599—602
[6] Taylor M G, Parker S F, Simkiss K, Mitchell P C H. Phys. Chem. Chem. Phys., 2001, 3: 1514—1517
[7] Hauptmann S, Dufner H, Brickmann J, Kast S M, Berry R S. Phys. Chem. Chem. Phys., 2003, 5: 635—639
[8] Lee W T, Dove M T, Salje E K H. J. Phys. Condens. Matter, 2000, 12: 9829—9841
[9] Rabone J, de Leeuw N. Phys. Chem. Miner., 2007, 34: 495—506
[10] Rabone J A L, de Leeuw N H. J. Comput. Chem., 2006, 27: 253—266
[11] De Leeuw N H. J. Mater. Chem., 2010, 20: 5376—5389
[12] Elliott J C, Mackie P E, Young R A. Science, 1973, 180: 1055—1057
[13] Kay M I, Young R A, Posner A S. Nature, 1964, 204: 1050—1052
[14] Sudarsanan K, Young R A. Acta Crystallogr. Sect. B: Struct. Sci., 1969, 25: 1534—1543
[15] Hochrein O, Kniep R, Zahn D. Chem. Mater., 2005, 17: 1978—1981
[16] Suda H, Yashima M, Kakihana M, Yoshimura M. J. Phys. Chem., 1995, 99: 6752—6754
[17] Takahashi H, Yashima M, Kakihana M, Yoshimura M. Thermochim. Acta, 2001, 371: 53—56
[18] Zahn D, Hochrein O. Z. Anorg. Allg. Chem., 2005, 631: 1134—1138
[19] Ma G, Liu X Y. J. Cryst. Growth, 2009, 9: 2991—2994
[20] De Leeuw N H. Chem. Commun., 2001, 1646—1647
[21] De Leeuw N H. Phys. Chem. Chem. Phys., 2002, 4: 3865—3871
[22] Pedone A, Corno M, Civalleri B, Malavasi G, Menziani M C, Segre U, Ugliengo P. J. Mater. Chem., 2007, 17: 2061—2068
[23] Zahn D, Hochrein O. Z. Anorg. Allg. Chem., 2006, 632: 79—83
[24] Calderín L, Stott M J, Rubio A. Phys. Rev. B, 2003, 67: art. no. 134106
[25] Haverty D, Tofail S A M, Stanton K T, McMonagle J B. Phys. Rev. B, 2005, 71: art. no. 094103
[26] Nakamura S, Takeda H, Yamashita K. J. Appl. Phys., 2001, 89: 5386—5392
[27] Hitmi N, LaCabanne C, Young R A. J. Phys. Chem. Solids, 1988, 49: 541—550
[28] Mostafa N Y, Brown P W. J. Phys. Chem. Solids, 2007, 68: 431—437
[29] Cruz F J A L, Canongia Lopes J N, Calado J C G, Minas da Piedade M E. J. Phys. Chem. B, 2005, 109: 24473—24479
[30] Cruz F J A L, Canongia Lopes J N, Calado J C G. J. Phys. Chem. B, 2006, 110: 4387—4392
[31] Cruz F J A L, Lopes J N C, Calado J C G. Fluid Phase Equilib., 2007, 253: 142—146
[32] Zahn D, Hochrein O. J. Solid State Chem., 2008, 181: 1712—1716
[33] Posner A S. Physiol. Rev., 1969, 49: 760—792
[34] Fleet M E, Liu X. J. Solid State Chem., 2004, 177: 3174—3182
[35] Fleet M E, Liu X. Biomaterials, 2005, 26: 7548—7554
[36] Wilson R M, Elliott J C, Dowker S E P, Smith R I. Biomaterials, 2004, 25: 2205—2213
[37] Peeters A, de Maeyer E A P, van Alsenoy C, Verbeeck R M H. J. Phys. Chem. B, 1997, 101: 3995—3998
[38] Astala R, Stott M J. Chem. Mater., 2005, 17: 4125—4133
[39] Peroos S, Du Z, de Leeuw N H. Biomaterials, 2006, 27: 2150—2161
[40] Wilson E E, Awonusi A, Morris M D, Kohn D H, Tecklenburg M M, Beck L W. J. Bone Miner. Res., 2005, 20: 625—634
[41] Wilson E E, Awonusi A, Morris M D, Kohn D H, Tecklenburg M M J, Beck L W. Biophys. J., 2006, 90: 3722—3731
[42] Corno M, Rimola A, Bolis V, Ugliengo P. Phys. Chem. Chem. Phys., 2010, 12: 6309—6329
[43] Cooper T G, de Leeuw N H. Langmuir, 2004, 20: 3984—3994
[44] Tilocca A, Cormack A N. ACS Appl. Mater. Interfaces, 2009, 1: 1324—1333
[45] Mkhonto D, de Leeuw N H. J. Mater. Chem., 2002, 12: 2633—2642
[46] Zahn D, Hochrein O. Phys. Chem. Chem. Phys., 2003, 5: 4004—4007
[47] Pan H, Tao J, Wu T, Tang R. Frontiers of Chemistry in China, 2007, 2: 156—163
[48] De Leeuw N H. Phys. Chem. Chem. Phys., 2004, 6: 1860—1866
[49] Filgueiras M R T, Mkhonto D, de Leeuw N H. J. Cryst. Growth, 2006, 294: 60—68
[50] De Leeuw N H, Rabone J A L. Cryst. Eng. Comm., 2007, 9: 1178—1186
[51] Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J. Science, 2005, 307: 1450—1454
[52] Koutsopoulos S, Dalas E. Langmuir, 2001, 17: 1074—1079
[53] Matsumoto T, Okazaki M, Inoue M, Hamada Y, Taira M, Takahashi J. Biomaterials, 2002, 23: 2241—2247
[54] Koutsopoulos S, Dalas E. J. Colloid Interface Sci., 2000, 231: 207—212
[55] Gajjeraman S, Narayanan K, Hao J, Qin C, George A. J. Biol. Chem., 2007, 282: 1193—1204
[56] Hunter G K, Hauschka P V, Poole A R, Rosenberg L C, Goldberg H A. Biochem. J., 1996, 317: 59—64
[57] Koutsopoulos S, Dalas E. Langmuir, 2000, 16: 6739—6744
[58] Jack K S, Vizcarra T G, Trau M. Langmuir, 2007, 23: 12233—12242
[59] Duffy D M, Harding J H. Langmuir, 2004, 20: 7637—7642
[60] Harding J H, Duffy D M. J. Mater. Chem., 2006, 16: 1105—1112
[61] Santos O, Kosoric J, Hector M P, Anderson P, Lindh L. J. Colloid Interface Sci., 2008, 318: 175—182
[62] Bhowmik R, Katti K S, Katti D. Polymer, 2007, 48: 664—674
[63] Mkhonto D, Ngoepe P, Cooper T, de Leeuw N. Phys. Chem. Miner., 2006, 33: 314—331
[64] Shen J W, Wu T, Wang Q, Pan H H. Biomaterials, 2008, 29: 513—532
[65] Zhang Z S, Pan H H, Tang R K. Frontiers of Materials Science in China, 2008, 2: 239—245
[66] Pan H, Tao J, Xu X, Tang R. Langmuir, 2007, 23: 8972—8981
[67] Busch S, Dolhaine H, DuChesne A, Heinz S, Hochrein O, Laeri F, Podebrad O, Vietze U, Weiland T, Kniep R. Eur. J. Inorg. Chem., 1999, 1643—1653
[68] Busch S, Schwarz U, Kniep R. Chem. Mater., 2001, 13: 3260—3271
[69] Tlatlik H, Simon P, Kawska A, Zahn D, Kniep R. Angew. Chem. Int. Ed., 2006, 45: 1905—1910
[70] Vaidyanathan T K, Vaidyanathan J. J. Biomed. Mater. Res. B, 2009, 88B: 558—578
[71] Paparcone R, Kniep R, Brickmann J. Phys. Chem. Chem. Phys., 2009, 11: 2186—2194
[72] Brickmann J, Paparcone R, Kokolakis S, Zahn D, Duchstein P, Carrillo-Cabrera W, Simon P, Kniep R. Chem. Phys. Chem., 2010, 11: 1851—1853
[73] Simon P, Zahn D, Lichte H, Kniep R. Angew. Chem. Int. Ed., 2006, 45: 1911—1915
[74] Batina N, Renugopalakrishnan V, Casillas Lavín P N, Guerrero J C H, Morales M, Garduo-Juárez R, Lakka S L. Calcif. Tissue Int., 2004, 74: 294—301
[75] Shaw W J, Campbell A A, Paine M L, Snead M L. J. Biol. Chem., 2004, 279: 40263—40266
[76] Raut V P, Agashe M A, Stuart S J, Latour R A. Langmuir, 2005, 21: 1629—1639
[77] Almora-Barrios N, de Leeuw N H. Cryst. Eng. Comm., 2010, 12: 960—967
[78] Brès E F, Hutchison J L. J. Biomed. Mater. Res., 2002, 63: 433—440
[79] Almora-Barrios N, Austen K F, de Leeuw N H. Langmuir, 2009, 25: 5018—5025
[80] Almora-Barrios N, de Leeuw N H. Langmuir, 2010, 26: 14535—14542
[81] Schepers T, Brickmann J, Hochrein O, Zahn D. Z. Anorg. Allg. Chem., 2007, 633: 411—414
[82] Kawska A, Hochrein O, Brickmann J, Kniep R, Zahn D. Angew. Chem. Int. Ed., 2008, 47: 4982—4985
[83] Ganss B, Kim R H, Sodek J. Crit. Rev. Oral Biol. Medicine, 1999, 10: 79—98
[84] George A, Veis A. Chem. Rev., 2008, 108: 4670—4693
[85] Yang Y, Cui Q, Sahai N. Langmuir, 2010, 26: 9848—9859
[86] Makrodimitris K, Masica D L, Kim E T, Gray J J. J. Am. Chem. Soc., 2007, 129: 13713—13722
[87] Dong X L, Zhou H L, Wu T, Wang Q. J. Phys. Chem. B, 2008, 112: 4751—4759
[88] Dong X, Wang Q, Wu T, Pan H. Biophys. J., 2007, 93: 750—759
[89] Zhou H, Wu T, Dong X, Wang Q, Shen J. Biochem. Biophys. Res. Commun., 2007, 361: 91—96
[90] Isralewitz B, Baudry J, Gullingsrud J, Kosztin D, Schulten K. J. Mol. Graph. Model., 2001, 19: 13—25
[91] Moradian-Oldak J, Bouropoulos N, Wang L, Gharakhanian N. Matrix Biol., 2002, 21: 197—205
[92] Chen X, Wang Q, Shen J, Pan H, Wu T. J. Phys. Chem. C, 2006, 111: 1284—1290
[93] Kawska A, Brickmann J, Kniep R, Hochrein O, Zahn D. J. Chem. Phys., 2006, 124: 24513—24517
[94] De Yoreo J J, Dove P M. Science, 2004, 306: 1301—1302
[95] Wang L, Nancollas G H. Chem. Rev., 2008, 108: 4628—4669
[96] Teng H H, Dove P M, Orme C A, de Yoreo J J. Science, 1998, 282: 724—727
[97] Orme C A, Noy A, Wierzbicki A, McBride M T, Grantham M, Teng H H, Dove P M, de Yoreo J J. Nature, 2001, 411: 775—779
[98] Hoang Q Q, Sicheri F, Howard A J, Yang D S C. Nature, 2003, 425: 977—980
[1] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[2] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[3] Xiaoyang Liu. Condensed Matter Chemistry under High Pressure [J]. Progress in Chemistry, 2020, 32(8): 1184-1202.
[4] Xiaofang Wang, Yin Hu, Qifa Pan, Ruilong Yang, Zhong Long, Kezhao Liu. Crystal Structure and Electronic Structure of Uranium Nitrides [J]. Progress in Chemistry, 2018, 30(12): 1803-1818.
[5] Yanyan Zhu, Zongyang Yue, Wen Bian, Ruilin Liu, Xiaoxun Ma, Xiaodong Wang. The Structure of Hexaaluminate and Application in High-Temperature Reaction [J]. Progress in Chemistry, 2018, 30(12): 1992-2002.
[6] Yuanyuan Wu, Haihua Pan, Ruikang Tang. Collagen Mineralization and Tissue Repair [J]. Progress in Chemistry, 2018, 30(10): 1503-1510.
[7] Wang Rongmin, Sun Kangqi, Wang Jianfeng, He Yufeng, Song Pengfei, Xiong Yubing. Preparation and Application of Natural Polymer/Hydroxyapatite Composite [J]. Progress in Chemistry, 2016, 28(6): 885-895.
[8] Zhao Xiang, Zhao Zongyan. Quaternary Compound Semiconductor Cu2 ZnSnS4: Structure, Preparation, Applications, and Perspective [J]. Progress in Chemistry, 2015, 27(7): 913-934.
[9] Lu Wensheng, Wang Haifei, Zhang Jianping, Jiang Long. Gold Nanorods: Synthesis, Growth Mechanism and Purification [J]. Progress in Chemistry, 2015, 27(7): 785-793.
[10] Chen Feng, Zhu Yingjie. Microwave-Assisted Synthesis of Calcium Phosphate Nanostructured Materials in Liquid Phase [J]. Progress in Chemistry, 2015, 27(5): 459-471.
[11] Liao Jianguo, Li Yanqun, Duan Xingze, Zhu Lingli. Nano-Hydroxyapatite/Polymer Composite as Bone Repair Materials [J]. Progress in Chemistry, 2015, 27(2/3): 220-228.
[12] Tian Zhimei, Liu Wangdan, Cheng Longjiu. Progress of the Experimental and Theoretical Studies on Aum(SR)n Clusters [J]. Progress in Chemistry, 2015, 27(12): 1743-1753.
[13] Yang Feng, Liang Hong*. Structural Basis of Human Serum Albumin and Its Complexes [J]. Progress in Chemistry, 2013, 25(04): 530-538.
[14] Ren Hong, Zhang Ping, Wu Ping, Lu Fei. Coordination Polymers Constructed from Triazole and Carboxylate Mixed Ligands [J]. Progress in Chemistry, 2012, 24(05): 769-775.
[15] Liu Chunli, Wang Luhua. Synthesis and Crystal Structure of Uranyl Complexes [J]. Progress in Chemistry, 2011, 23(7): 1372-1378.