中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (05): 722-736 Previous Articles   Next Articles

• Review •

Impedance Characteristics of Dye Sensitized Solar Cells

Liu Weiqing1,2, Kou Dongxing1, Cai Molang1, Hu Linhua1, Dai Songyuan1*   

  1. 1. Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
    2. Key Laboratory of Nondestructive Testing of Ministry of Education, School of Measuring and Optical Engineering, Nanchang Hangkong University, Nanchang 330063, China
  • Received: Revised: Online: Published:
PDF ( 1601 ) Cited
Export

EndNote

Ris

BibTeX

Dye-sensitized solar cells (DSC) are regarded as a potential low-cost alternative to conventional solar cells and have attracted considerable interest during the past decades. The working mechanism of DSC is not yet fully been understood and needs further investigation. Electrochemical impedance spectroscopy (EIS) is a powerful technique to identify and study the working mechanism in DSC. Through the EIS measurements, some parameters, such as electron transfer resistance, electron transport resistance, capacitance, ion diffusion resistance, electron diffusion constant and electron lifetime, etc. can be obtained. After further processing of these data, the charge transport kinetics, the electron transfer kinetics, the electron collection kinetics, the semiconductor energy level changes and the density of states distribution can be analyzed. This paper summarizes the basic theory and experimental methods of EIS application in DSC. The latest research progress about the charge transport process, the electron transfer process, the impedance of DSC information extraction and the dynamic process analysis are reviewed. Furthermore, the application of EIS in various research fields of DSC, such as photoanode, electrolyte system, counter electrode, stability test, new structure design are introduced. Especially, the impedance characteristics of the various components of DSC are summed up and the latest progress in the study of the work mechanism in DSC are systematically summarized. The current problems existed in the research of EIS application for DSC are discussed and the future development is prospected.

Contents
1 Introduction
2 Basic theory of EIS application in DSC
2.1 Light and dark impedance characteristic research
2.2 Study on frequency response of DSC internal processes
2.3 Study on the mathematical model of EIS
3 Experimental methods of EIS application in DSC
3.1 The two electrodes and the three electrodes measuring system
3.2 The difference and connection between optical/electrical impedance in the frequency domain
4 Analysis of DSC impedance information
4.1 Study on the construction of DSC equivalent circuit
4.2 The impedance of the DSC information extraction and dynamic process analysis
5 The impedance characteristics of DSC
5.1 The impedance characteristics of optical anode
5.2 The impedance characteristics of the electrolyte system
5.3 The impedance characteristics of the counter electrode
5.4 The impedance characteristics of the dye/co-adsorbent
5.5 The impedance characteristics of the conductive substrate
5.6 EIS application in the stability
5.7 EIS application in the new structure cell
6 Summary and outlook

CLC Number: 

[1] Gratzel M. Nature, 2001, 414: 338—344
[2] 朱俊(Zhu J), 戴松元(Dai S Y), 张耀红(Zhang Y H). 化学进展(Progress in Chemistry), 2011, 22: 822—828
[3] Bisquert J. J. Phys. Chem. B, 2002, 106: 325—333
[4] Hagfeldt A, Boschloo G, Sun L C, Kloo L, Pettersson H. Chem. Rev., 2010, 110: 6595—6663
[5] Liu W Q, Hu L H, Dai S Y, Guo L, Jiang N Q, Kou D. Electrochim. Acta, 2010, 55: 2338—2343
[6] Huang S Y, Schlichthorl G, Nozik A J, Gratzel M, Frank A J. J. Phys. Chem. B, 1997, 101: 2576—2582
[7] Wang Q, Moser J E, Gratzel M. J. Phys. Chem. B, 2005, 109: 14945—14953
[8] 刘伟庆 (Liu W Q), 寇东星(Kou D X), 胡林华(Hu L H), 黄阳(Huang Y), 姜年权(Jiang N Q), 戴松元(Dai S Y). 物理学报(Acta Physica Sinica), 2010, 59: 5141—5147
[9] 张鉴清(Zhang J Q). 电化学测试技术(Electrochemical Measurement Technology), 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2010
[10] Han L Y, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A, Yamanaka R. Appl. Phys. Lett., 2005, 86: 3501—3503
[11] Koide N, Islam A, Chiba Y, Han L Y. J. Photochem. Photobiol. A, 2006, 182: 296—305
[12] Han L Y, Koide N, Chiba Y, Islam A, Mitate T. C. R. Chim., 2006, 9: 645—651
[13] Liu W Q, Kou D X, Hu L H, Dai S Y. Chem. Phys. Lett., 2011, 513: 145—148
[14] Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A. Sol. Energy Mater. Sol. Cells, 2005, 87: 117—131
[15] Cameron P J, Peter L M, Hore S. J. Phys. Chem. B, 2005, 109: 930—936
[16] Schlichthorl G, Huang S Y, Sprague J, Frank A J. J. Phys. Chem. B, 1997, 101: 8141—8155
[17] Bisquert J. J. Phys. Chem. B, 2004, 108: 2323—2332
[18] Sastrawan R. Dissertation zur Erlangung des Dok-torgrades der Fakultt für Mathematik und Physik der Albert-Ludwigs-Universitt Freiburg im Breisgau, 2006
[19] Kern R, Sastrawan R, Ferber J, Stangl R, Luther J. Electrochim. Acta, 2002, 47: 4213—4225
[20] Wang Q, Ito S, Gratzel M, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Bessho T, Imai H. J. Phys. Chem. B, 2006, 110: 25210—25221
[21] Bisquert J. Phys. Chem. Chem. Phys., 2003, 5: 5360—5364
[22] Bisquert J, Garcia-Belmonte G. Russ. J. Electrochem., 2004, 40: 352—358
[23] Wei T C, Wan C C, Wang Y Y, Chen C M, Shiu H S. J. Phys. Chem. C, 2007, 111: 4847—4853
[24] Hoshikawa T, Yamada M, Kikuchi R, Eguchi K. J. Electroanal. Chem., 2005, 577: 339—348
[25] Hoshikawa T, Kikuchi R, Eguchi K. J. Electroanal. Chem., 2006, 588: 59—67
[26] Dloczik L, Ileperuma O, Lauermann I, Peter L M, Ponomarev E A, Redmond G, Shaw N J, Uhlendorf I. J. Phys. Chem. B, 1997, 101: 10281—10289
[27] Peter L M, Wijayantha K G U. Electrochim. Acta, 2000, 45: 4543—4551
[28] 刘伟庆(Liu W Q), 胡林华(Hu L H), 霍志鹏(Huo Z P), 戴松元(Dai S Y). 化学进展(Progress in Chemistry), 2009, 21: 1085—1093
[29] Peter L M, Duffy N W, Wang R L, Wijayantha K G U. J. Electroanal. Chem., 2002, 524: 127—136
[30] 刘伟庆(Liu W Q). 中国科学院研究生院博士论文(Doctoral Dissertation of Graduate University of Chinese Academy of Sciences), 2010
[31] Van de Lagemaat J, Park N G, Frank A J. J. Phys. Chem. B, 2000, 104: 2044—2052
[32] Bisquert J, Fabregat-Santiago F, Garcia-Belmonte G, Mora-Sero I. Phys. Chem. Chem. Phys., 2011, 13: 9083—9118
[33] Wang M, Chen P, Humphry-Baker R, Zakeeruddin S M, Gratzel M. ChemPhysChem, 2009, 10: 290—299
[34] Fabregat-Santiago F, Bisquert J, Cevey L, Chen P, Wang M K, Zakeeruddin S M, Gratzel M. J. Am. Chem. Soc., 2009, 131: 558—562
[35] Bisquert J, Gratzel M, Wang Q, Fabregat-Santiago F. J. Phys. Chem. B, 2006, 110: 11284—11290
[36] Yong V, Ho S T, Chang R P H. Appl. Phys. Lett., 2008, 92: 143506—143508
[37] Gratzel M, Wang Q, Ito S, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Bessho T, Imai H. J. Phys. Chem. B, 2006, 110: 25210—25221
[38] Gratzel M, Wang Q, Moser J E. J. Phys. Chem. B, 2005, 109: 14945—14953
[39] Han L Y, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A, Yamanaka R. Appl. Phys. Lett., 2005, 86: art. no. 213501
[40] Adachi M, Sakamoto M, Jiu J T, Ogata Y, Isoda S. J. Phys. Chem. B, 2006, 110: 13872—13880
[41] Wang Q, Zhang Z P, Zakeeruddin S M, Gratzel M. J. Phys. Chem. C, 2008, 112: 10585—10585
[42] Wang Q, Zhang Z, Zakeeruddin S M, Gratzel M. J. Phys. Chem. C, 2008, 112: 7084—7092
[43] Wang Q, Jennings J R. J. Phys. Chem. C, 2010, 114: 1715—1724
[44] Lee W J, Ramasamy E, Lee D Y. Sol. Energy Mater. Sol. Cells, 2009, 93: 1448—1451
[45] Dai S, Weng J, Sui Y F, Shi C W, Huang Y, Chen S H, Pan X, Fang X Q, Hu L H, Kong F T, Wang K J. Sol. Energy Mater. Sol. Cells, 2004, 84: 125—133
[46] Lee K M, Suryanarayanan V, Ho K C. Sol. Energy Mater. Sol. Cells, 2006, 90: 2398—2404
[47] Kang S H, Kim J Y, Kim H S, Koh H D, Lee J S, Sung Y E. J. Photochem. Photobiol. A, 2008, 200: 294—300
[48] Li X, Lin H, Li J B, Li X X, Cui B, Zhang L Z. J. Phys. Chem. C, 2008, 112: 13744—13753
[49] Zhao D, Peng T Y, Lu L L, Cai P, Jiang P, Bian Z Q. J. Phys. Chem. C, 2008, 112: 8486—8494
[50] 林原(Lin Y), 王尚华(Wang S H), 付年庆(Fu N Q), 张敬波(Zhang J B), 周晓文(Zhou X W), 肖绪瑞(Xiao X R). 化学进展(Progress in Chemistry), 2011, 23: 548—556
[51] Hsu C P, Lee K M, Huang J T W, Lin C Y, Lee C H, Wang L P, Tsai S Y, Ho K C. Electrochim. Acta, 2008, 53: 7514—7522
[52] Sommeling P M, O'Regan B C, Haswell R R, Smit H J P, Bakker N J, Smits J J T, Kroon J M, van Roosmalen J A M. J. Phys. Chem. B, 2006, 110: 19191—19197
[53] Chang R P H, Lee B, Hwang D K, Guo P J, Ho S T, Buchholtz D B, Wang C Y. J. Phys. Chem. B, 2010, 114: 14582—14591
[54] Fabregat-Santiago F, Garcia-Canadas J, Palomares E, Clifford J N, Haque S A, Durrant J R, Garcia-Belmonte G, Bisquert J. J. Appl. Phys., 2004, 96: 6903—6907
[55] Dai S Y, Tian H J, Hu L H, Zhang C N, Liu W Q, Huang Y, Mo L, Guo L, Sheng J. J. Phys. Chem. C, 2010, 114: 1627—1632
[56] Dai S Y, Tian H J, Hu L H, Zhang C N, Chen S H, Sheng J A, Mo L, Liu W Q. J. Mater. Chem., 2011, 21: 863—868
[57] He C, Zheng Z, Tang H L, Zhao L N, Lu F. J. Phys. Chem. C, 2009, 113: 10322—10325
[58] Xu T, Yang Z Z, Gao S M, Welp U, Kwok W K. J. Phys. Chem. C, 2010, 114: 19151—19156
[59] Hauch A, Georg A. Electrochim. Acta, 2001, 46: 3457—3466
[60] Sauvage F, Chhor S, Marchioro A, Moser J E, Graetzel M. J. Am. Chem. Soc., 2011, 133(33): 13103—13109
[61] Hoshikawa T, Ikebe T, Kikuchi R, Eguchi K. Electrochim. Acta, 2006, 51: 5286—5294
[62] Meng Q B, Qin D, Guo X Z, Sun H C, Luo Y H, Li D M. Prog. Chem., 2011, 23: 557—568
[63] Fabregat-Santiago F, Bisquert J, Palomares E, Otero L, Kuang D B, Zakeeruddin S M, Gratzel M. J. Phys. Chem. C, 2007, 111: 6550—6560
[64] Chen P Y, Lee C P, Vittal R, Ho K C. J. Power Sources, 2010, 195: 3933—3938
[65] Huo Z P, Dai S Y, Wang K J, Kong F T, Zhang C N, Pan X, Fang X Q. Sol. Energy Mater. Sol. Cells, 2007, 91: 1959—1965
[66] Shi C W, Dai S Y, Wang K J, Pan X, Zeng L Y, Hu L H, Kong F T, Guo L. Electrochim. Acta, 2005, 50: 2597—2602
[67] Liberatore M, Burtone L, Brown T M, Reale A, di Carlo A, Decker F, Caramori S, Bignozzi C A. Appl. Phys. Lett., 2009, 94: 173113—173115
[68] Jennings J R, Wang Q. J. Phys. Chem. C, 2010, 114: 1715—1724
[69] Hara K, Dan-Oh Y, Kasada C, Ohga Y, Shinpo A, Suga S, Sayama K, Arakawa H. Langmuir, 2004, 20: 4205—4210
[70] Nakade S, Makimoto Y, Kubo W, Kitamura T, Wada Y, Yanagida S. J. Phys. Chem. B, 2005, 109: 3488—3493
[71] 戴松元(Dai S Y), 肖尚锋(Xiao S F), 史成武(Shi C W), 陈双宏(Chen S H), 黄阳(Huang Y), 孔凡太(Kong F T), 胡林华(Hu L H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2005, 26: 518—521
[72] Hoshikawa T, Yamada M, Kikuchi R, Eguchi K. J. Electrochem. Soc., 2005, 152: E68—E73
[73] Chen L L, Tan W W, Zhang J B, Zhou X W, Zhang X L, Lin Y. Electrochim. Acta, 2010, 55: 3721—3726
[74] Cai F S, Liang J, Tao Z H, Chen J, Xu R S. J. Power Sources, 2008, 177: 631—636
[75] Chen J K, Li K X, Luo Y H, Guo X Z, Li D M, Deng M H, Huang S Q, Meng Q B. Carbon, 2009, 47: 2704—2708
[76] Wang G Q, Wang L A, Xing W, Zhuo S P. Mater. Chem. Phys., 2010, 123: 690—694
[77] Chen L L, Liu J, Zhang J B, Zhou X W, Zhang X L, Lin Y A. Chin. Chem. Lett., 2010, 21: 1137—1140
[78] Ramasamy E, Lee W J, Lee D Y, Song J S. Appl. Phys. Lett., 2007, 90: art. no. 173103
[79] Jiang Q W, Li G R, Wang F, Gao X P. Electrochem. Commun., 2010, 12: 924—927
[80] Aitola K, Kaskela A, Halme J, Ruiz V, Nasibulin A G, Kauppinen E I, Lunda P D. J. Electrochem. Soc., 2010, 157: B1831—B1837
[81] Lee W J, Ramasamy E, Lee D Y, Song J S. ACS Applied Materials & Interfaces, 2009, 1: 1145—1149
[82] Lee K M, Chen P Y, Hsu C Y, Huang J H, Ho W H, Chen H C, Ho K C. J. Power Sources, 2009, 188: 313—318
[83] Makris T, Dracopoulos V, Stergiopoulos T, Lianos P. Electrochim. Acta, 2011, 56: 2004—2008
[84] Qin Q, Tao J, Yang Y. Synth. Met., 2010, 160: 1167—1172
[85] Zhang J, Li X X, Guo W, Hreid T, Hou J F, Su H Q,Yuan Z B. Electrochim. Acta, 2011, 56: 3147—3152
[86] Xia J B, Yuan C C, Yanagida S. ACS Applied Materials & Interfaces, 2010, 2: 2136—2139
[87] Lee K, Park S W, Ko M J, Kim K, Park N G. Nat. Mater., 2009, 8: 665—671
[88] Gratzel M, Wang M K, Li X, Lin H, Pechy P, Zakeeruddin S M. Dalton Trans., 2009: 10015—10020
[89] Zhang Z P, Zakeeruddin S M, O'Regan B C, Humphry-Baker R, Gratzel M. J. Phys. Chem. B, 2005, 109: 21818—21824
[90] Wang M K, Gratzel C, Moon S J, Humphry-Baker R, Rossier-Iten N, Zakeeruddin S M, Gratzel M. Adv. Funct. Mater., 2009, 19: 2163—2172
[91] Yoshida Y, Tokashiki S, Kubota K, Shiratuchi R, Yamaguchi Y, Kono M, Hayase S. Sol. Energy Mater. Sol. Cells, 2008, 92: 646—650
[92] Kim J, Kim J. Lee M, Nanotechnology, 2010, 21: art. no. 345203
[93] Doh J G, Hong J S, Vittal R, Kang M G, Park N G, Kim K J. Chem. Mater., 2004, 16: 493—497
[94] Fabregat-Santiago F, Garcia-Belmonte G, Bisquert J, Bogdanoff P, Zaban A. J. Electrochem. Soc., 2003, 150: E293—E298
[95] Cameron P J, Peter L M. J. Phys. Chem. B, 2003, 107: 14394—14400
[96] Xia J B, Masaki N, Jiang K J, Yanagida S. J. Photochem. Photobiol. A, 2007, 188: 120—127
[97] Kuang D B, Wang P, Ito S, Zakeeruddin S M, Gratzel M. J. Am. Chem. Soc., 2006, 128: 7732—7733
[98] Zhang C N, Huang Y, Huo Z P, Chen S H, Dai S Y. J. Phys. Chem. C, 2009, 113: 21779—21783
[99] Fei Z F, Kuang D B, Zhao D B, Klein C, Ang W H, Zakeeruddin S M, Gratzel M, Dyson P J. Inorg. Chem., 2006, 45: 10407—10409
[100] Kato N, Takeda Y, Higuchi K, Takeichi A, Sudo E, Tanaka H, Motohiro T, Sano T, Toyoda T. Sol. Energy Mater. Sol. Cells, 2009, 93: 893—897
[101] Fuke N, Fukui A, Komiya R, Islam A, Chiba Y, Yanagida M, Yamanaka R, Han L Y. Chem. Mater., 2008, 20: 4974—4979
[1] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[2] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[3] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[4] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[5] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[6] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[7] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[8] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[9] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.
[10] Yeling Yan, Junmei Cao, Fanning Meng, Ning Wang, Liguo Gao, Tingli Ma. Large-Area Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(7): 1031-1043.
[11] Xueyan Shan, Shimao Wang, Gang Meng, Xiaodong Fang. Interface Engineering of Electron Transport Layer/Light Absorption Layer of Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(5): 714-722.
[12] Jianxi Kang, Shirong Wang, Mengna Sun, Hongli Liu, Xianggao Li. Regulation Methods for Micro-Morphology of Bulk Heterojunction Polymer Solar Cells [J]. Progress in Chemistry, 2017, 29(4): 400-411.
[13] Yang Wu, Zaiyu Wang, Xiangyi Meng, Wei Ma. Morphology Analysis of Organic Solar Cells with Synchrotron Radiation Based Resonant Soft X-Ray Scattering [J]. Progress in Chemistry, 2017, 29(1): 93-101.
[14] Li Yanping, Yu Huangzhong, Dong Yifan, Huang Xinxin. Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3 [J]. Progress in Chemistry, 2016, 28(8): 1170-1185.
[15] Lu Mengxia, Zhang Tao, Wang Wen, Ling Qidan. The Research Progress on Naphthalene Diimide Based n-Type Polymer Acceptor Materials [J]. Progress in Chemistry, 2016, 28(6): 872-884.