中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (05): 709-721 Previous Articles   Next Articles

• Review •

Spatiotemporal Dynamics of Photosensitive BZ Reaction

Lu Xingjie, Zhao Yuemin, Ren Lin, Yang Yingying, Gao Qingyu   

  1. College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, China
  • Received: Revised: Online: Published:
PDF ( 948 ) Cited
Export

EndNote

Ris

BibTeX

The Belousov-Zhabotinsky(BZ) reaction catalyzed by tris(2,2'-bipyridine)ruthenium(Ⅱ), one of the ideal chemical reaction system for studying nonlinear spatiotemporal dynamics, has unique photosensitive properties and can display rich spatiotemporal dynamical behaviors. Achievements of the photosensitive BZ reaction could help us to understand the complex dynamic phenomenon in physical, chemical and living systems. In this paper, the photo-effect on homogenous complex dynamics and reaction-diffusion chemical waves in ruthenium-catalyzed BZ reaction under different experiment conditions, as well as the complex dynamics in coupling system of the ruthenium-catalyzed BZ reaction with soft matter is reviewed. The photosensitive mechanisms and models are summarized. Finally, the existing questions and future directions of the research of photo-controlled BZ reaction systems are discussed.

Contents
1 Introduction
2 Complex spatiotemporal dynamic behavior of tris(2,2'-bipyridine)ruthenium(Ⅱ)-catalyzed BZ reaction
2.1 Homogenous oscillating reactions
2.2 Chemical waves in spatial reaction-diffusion systems
2.3 Ruthenium-catalyzed BZ reaction coupling with soft matter
3 Mechanism of photosensitive ruthenium-catalyzed BZ reaction
3.1 Mechanism of photoinhibition
3.2 Mechanism of photoinduction
4 Models
4.1 Models of photosensitive BZ reaction
4.2 gLSM model of photosensitive BZ reaction in responsive gel
5 Conclusions and outlook

CLC Number: 

[1] Hodgkin A L, Huxley A F. J. Physiol., 1952, 117: 500—544
[2] Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J. Nature, 1992, 255: 349—351
[3] Imbihl R, Ertl G. Chem. Rev., 1995, 95: 697—737
[4] Belousov B P. Sb. Ref. Radiats. Med., 1958, 145—147
[5] Epstein I R, Pojman J A. An Introduction to Nonlinear Chemical Dynamics. New York: Oxford University Press, 1998
[6] Wang J C, Zhao J P, Chen Y, Gao Q Y, Wang Y M. J. Phys. Chem. A, 2005, 109: 1374—1381
[7] Borckmans P, De Kepper P, Khokhlov A R, Metens S. Chemomechanical Instabilities in Responsive Materials. Springer, 2009
[8] Desai R C, Kapral R. Dynamics of Self-Organized and Self-Assembled Structures. Cambidge University Press. 2009
[9] Sekiguchi T, Mori Y, Hanazaki I. Chem. Lett., 1993, 22: 1309—1312
[10] Amemiya T, Yamamoto T, Ohmori T, Yamaguchi T. J. Phys. Chem. A, 2002, 106: 612—620
[11] Jinguji M, Ishihara M, Nakazawa T. J. Phys. Chem., 1992, 96: 4279—4281
[12] Showalter K, Noyes R M, Bar-Eli K. J. Phys. Chem., 1978, 69: 2514—2525
[13] Jung P, Hanggi P. Phys. Rev. A, 1991, 44: 8032—8042
[14] Guderian A, Münstera A F, Jingujib M, Krausa M, Schneider F W. Chem. Phys. Lett., 1999, 312: 440—446
[15] Kuhnert L, Krug H J. J. Phys. Chem., 1987, 91: 730—733
[16] Reddy M K R, Nagy-Ungvarai Z, Muller S C. J. Phys. Chem., 1994, 98: 12255—12259
[17] Steinbock O, Muller S C. Physica A, 1992, 188: 61—67
[18] Steinbock O, Muller S C, Zykov V. S. Phys. Rev. E, 1993, 48: 3295—3298
[19] Petrov V, Ouyang Q, Swinney H L. Nature, 1997, 388: 655—657
[20] Amemiya T, Kádár S, Kettunen P, Showalter K. Phys. Rev. Lett., 1996, 77: 3244—3247
[21] Amemiya T, Kettunen P, Kádár S, Yamaguchi T, Showalter K. Chaos, 1998, 8: 872—878
[22] Steinbock O, Zykov V S, Muller S C. Phys. Rev. E, 1993, 48: 3295—3298
[23] Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. J. Am. Chem. Soc., 1996, 118: 5134—5135
[24] Maeda S, Hara Y, Yoshida R, Hashimoto S. Angew. Chem. Int. Ed., 2008, 47: 6690—6693
[25] Maeda S, Hara Y, Yoshida R, Hashimoto S. Angew. Chem. Int. Ed., 2008, 120: 6792—6795
[26] Kuhnert L. Nature, 1986, 319: 393—394
[27] Kuhnert L, Agladze K I, Krinsky V I. Nature, 1989, 337: 244—247
[28] Steinbock O, Zykov V, Muller S C. Nature, 1993, 366: 322—324
[29] Kádár S, Wang J C, Showalter K. Nature, 1998, 391: 770—772
[30] Gray P, Scott S K. Chemical Oscillation and Instabilities. Oxford: Clarendon Press, 1990
[31] Zhabotinsky A M. Biofizika, 1964, 9: 306—311
[32] Demas J N, Diemente D. J. Chem. Educ., 1973, 50: 357—358
[33] Bolletta F, Balzani V. J. Am. Chem. Soc., 1982, 104: 4250—4251
[34] Zeyer K P, Schneider F W. J. Phys. Chem. A, 1998, 102: 9702—9709
[35] Gaspar V, Bazsa G, Beck M T. Z. Phys. Chem., 1983, 264: 43—48
[36] Delgado J, Zhang Y, Xu B, Epstein I R. J. Phys. Chem. A, 2011, 11: 2208—2215
[37] Kaminaga A, Hanazaki I. J. Phys. Chem. A, 1998, 102: 3307—3314
[38] Kaminaga A, Hanazaki I. Chem. Phys. Lett., 1997, 278: 16—20
[39] Kaminaga A, Mori Y, Hanazaki I. Chem. Phys. Lett., 1997, 279: 339—343
[40] Agladze K, Obata S, Yoshikawa K. Physica D, 1995, 84: 238—245
[41] Matsumura I T, Nakamura T, Mori Y, Hanazaki I. Chem. Lett., 1999, 11: 1237—1238
[42] Huh D S, Choe Y M, Park D Y, Park S Y, Zhao Y S, Kim Y J, Yamaguchi T. Chem. Phys. Lett., 2006, 417: 555—560
[43] Delgado J, Li N, Leda M, Hector O, Ochoa G, Fraden F, Epstein I R. Soft Matter, 2011, 7: 3155—3167
[44] Vanag V K, Epstein I R. Chaos, 2007, 17: art. no. 037110
[45] Nanjundiah V. Biophys. Chem., 1998, 72: 1—8
[46] Bugrim A E, Zhabotinsky A M, Epstein I R. Biophys. J., 1997, 73: 2897—2906
[47] Krug H J, Pohlmann L, Kuhnert L. J. Phys. Chem., 1990, 94: 4862—4866
[48] Steele A J, Tinsley M, Showalter K. Chaos, 2008, 18: art. no. 026108
[49] Yoshikawa K. J. Phys. Chem. A, 2009, 113: 10405—10409
[50] Reddy M K R, Dahlem M, Zykov V S, Muller S C. Chem. Phys. Lett., 1995, 236: 111—116
[51] Nakata S, Matsushita M, Sato T, Suematsu N J, Kitahata H, Amemiya T, Mori Y. J. Phys. Chem. A, 2011, 115: 7406—7412
[52] Kitahata H, Yoshikawa K. J. Phys.: Condens. Matter, 2005, 77: 4239—4248
[53] Winfree A T. Science, 1972, 175: 634—636
[54] Bub G, Shrier A, Glass L. Phys. Rev. Lett., 2002, 88: art. no. 058101
[55] Petrov V, Li G, Ouyang Q, Swinney H L. J. Phys. Chem., 1996, 100: 18992—18996
[56] Aliev R R, Amemiya T, Yamaguchi T. Chem. Phys. Lett., 1996, 257: 552—556
[57] Braune M, Engel H. Chem. Phys. Lett., 1993, 204: 257—264
[58] Braune M, Engel H. Chem. Phys. Lett., 1993, 211: 534—540
[59] Braune M, Schrader A, Engel H. Chem. Phys. Lett., 1994, 222: 358—362
[60] Brandtstdter H, Braune M, Schebesch I, Engel H. Chem. Phys. Lett., 2000, 323: 145—154
[61] Agladze K, Voignier V, Hamm E, Plaza F, Krinsky V. J. Phys. Chem., 1996, 100: 18764—18769
[62] Martinez K, Lin A L, Kharrazian R. Physica D: Nonlinear Phenomena, 2002, 168: 1—9
[63] Markus M, Nagy U Z, Hess B. Science, 1992, 257: 225—227
[64] Cassidy I, Muller S C. Phys. Rev. E, 2006, 74: art. no. 026206
[65] Nukata S, Morishima S, Kitahata H. J. Phys. Chem. A, 2006, 110: 3633—3637
[66] Matsushita M, Nakata S, Kitahata H. J. Phys. Chem. A, 2007, 111: 5833—5838
[67] Tanaka M, Nagahara H, Kitahata H, Krinsky V, Agladze K, Yoshikawa K. Phys. Rev. E, 2007, 76: art. no. 016205
[68] Bradley M, David J W, Simpson A, Lin A L. Phys. Rev., 2007, 76: art. no. 026213
[69] Lin A L, Bertram M, Martinez K, Swinney H L. Phys. Rev. Lett., 2000, 84: 4240—4243
[70] Lin A L, Hagberg A, Ardelea A, Bertram M, Swinney H L, Meron E. Phys. Rev. E, 2000, 62: 3790—3798
[71] Marts B, Martinez K, Lin A L. Phys. Rev. E, 2004, 69: art. no. 066217
[72] Nakata S, Kashima K, Kitahata H, Mori Y. J. Phys. Chem. A, 2010, 114: 9124—9129
[73] Samoilov M, Arkin A, Ross J. J. Phys. Chem. A, 2002, 106: 10205—10221
[74] Ichino T, Fujio K, Matsushita M, Nakata S. J. Phys. Chem. A, 2009, 113: 2034—2038
[75] Nakata S, Morishima S, Ichino T, Kitahata H. J. Phys. Chem. A, 2006, 110: 13475—13478
[76] Sendia-Nadal I, Gómez-Gesteira M, Pérez-Muuzuri V. Phys. Rev. E, 1997, 56: 6298—6301
[77] Jinguji M, Ishihara M, Nakazawa T, Nagashima N. Physica D: Nonlinear Phenomena, 1995, 84: 246—252
[78] Agladze K, Tóth A, Ichino T, Yoshikawa T. J. Phys. Chem. A, 2000, 104: 6677—6680
[79] Toth R, Stone C, Adamatzky A. Chaos, Solitons & Fractals, 2009, 41: 1605—1615
[80] Costello B D L, Toth R. Phys. Rev. E, 2009, 79: art no. 026114
[81] Igarashi Y, Gorecki J, Gorecka J N. Acta Phys. Polo. B, 2008, 39: 1187—1197
[82] Agladze K, Aliev R R, Yamaguchi T, Yoshikawa K. J. Phys. Chem., 1996, 100: 13895—13897
[83] Gorecka J N, Gorecki J, Igarashi Y. J. Phys. Chem. A, 2007, 111: 885—889
[84] Ichino T, Fujio K, Matsushita M, Nakata S. J. Phys. Chem. A, 2009, 113: 2304—2308
[85] Gorecki J, Yoshikawa K, Igarashi Y. J. Phys. Chem. A, 2003, 107: 1664—1669
[86] Kaminaga A, Vladimir K, Epstein I R. Angew. Chem. Int. Ed., 2006, 45: 3087—3089
[87] Vanag V K, Epstein I R. Phys. Rev. Lett., 2001, 87: 228301—228305
[88] Mironov S, Vinson M, Mulvey S, Pertsov A. J. Phys. Chem., 1996, 100: 1975—1983
[89] Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J. Nature, 1992, 355: 349—351
[90] Gorelova A, Bures J. J. Neurobiol., 1983, 14: 353—363
[91] Huh D S, Kang J K, Kim Y J, Yoshida R. Poly. Bull., 2005, 54: 215—223
[92] Maeda S, Hara Y, Yoshida R, Hashimoto S. Int. J. Mol, Sci., 2010, 11: 52—66
[93] Miyakawa K, Sakamoto F, Yoshida R, Kokufuta E, Yamaguchi T. Phys. Rev. E, 2000, 62: 793—798
[94] Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S. Adv. Mater., 2007, 19: 3480—3484
[95] Yoshida R. Sensors, 2010, 10: 1810—1822
[96] Murase Y, Hidaka M, Yoshida R. Sensors and Actuators B, 2010, 149: 272—283
[97] Shinohara S I, Seki T, Sakai T, Yoshida R, Takeoka Y. Angewandte Chemie, 2008, 10: 9179—9183
[98] Field R J, Noyes R M, Koro E. J. Am. Chem. Soc., 1972, 94: 8649—8664
[99] Toth R, Taylor A F. Prog. React. Kinet. Mech., 2006, 31: 59—115
[100] Reddy M K R, Szlavik Z, Nagy-Ungvarai Z, Muller S C. J. Phys. Chem., 1995, 99: 15081—15085
[101] Hanazaki I. J. Phys. Chem., 1992, 96: 5652—5657
[102] Srivastava P K, Mori Y, Hanazaki I. Chem. Phys. Lett., 1992, 190: 279—284
[103] Zaikin A N, Zhabotinsky A M. Biological and Biochemical Oscillators. New York: Academic Press, 1973. 81—85
[104] Yamaguchi T, Shimamoto Y, Amemiya T, Yoshimoto M, Ohmori T, Nakaiwa M, Akiya T, Sato M, Matsumura- Inoue T. Chem. Phys. Lett., 1996, 259: 219—224
[105] Kádár S, Amemiya T, Showalter K. J. Phys. Chem. A, 1997, 101: 8200—8206
[106] Vanag V K, Zhabotinsky A M, Epstein I R. J. Phys. Chem. A, 2000, 104: 8207—8215
[107] Treindl L, Knudsen D, Nakamura T, Inoue T M, Jrgensen K B, Ruoff P. J. Phys. Chem. A, 2000, 104: 10783—10788
[108] Hanazaki I, Kaminaga A, Mori Y, Rabai G. Ach-Models in Chemistry, 1998, 135: 257—268
[109] Field R J, Noyes R M. J. Chem. Phys., 1974, 60: 1877—1884
[110] Bao W, Li Z, Zhou L Q, Gao Z. Phys. Rev. E, 2009, 79: art. no. 016214
[111] Kheowan O U, Chan C K, Zykov V S, Rangsiman O, Müller S C. Phys. Rev. Lett., 2001, 86: 2170—2173
[112] Zhou L Q, Cassidy I, Muller S C. Phys. Rev. Lett., 2005, 94: 128301—128304
[113] Amemiya T, Ohmori T, Yamaguchi T. J. Phys. Chem. A, 2000, 104: 336—344
[114] Amemiya T, Ohmori T, Nakaiwa M, Yamaguchi T. J. Phys. Chem. A, 1998, 102: 4537—4542
[115] Rovinsky A, Zhabotinsky A M. J. Phys. Chem., 1984, 88: 6081—6084
[116] Zhabotinsky A M, Buchholtz F, Kiyatkin A B, Epstein I R. J. Phys. Chem., 1993, 97: 7578—7584
[117] Yashin V V, Balazs A C. J. Chem. Phys., 2007, 126: 124707—124724
[118] Yashin V V, Balazs A C. Macromolecules, 2006, 39: 2024—2026
[119] Kuksenok O, Yashin V V, Balazs A C. Soft Matter, 2007, 3: 1138—1144
[120] Yashin V V, Vliet K V, Balazs A C. Phys. Rev. E, 2009, 79: art. no. 046214
[121] Yashin V V, Vliet K V, Balazs A C. Phys. Rev. E, 2009, 79: art. no. 046214
[122] Yashin V V, Kuksenok O, Balazs A C. J. Phys. Chem. B, 2010, 114: 6316—6322
[123] Dayal P, Kuksenok O, Balazs A C. Langmuir, 2009, 25: 4298—4301
[124] Chen I C, Kuksenok O, Yashin V V, Moslin R M, Balazs A C, Vliet K J V. Soft Matter, 2011, 7: 3141—3146
[125] Vanag V K. Russ. J. Gene. Chem., 2011, 81: 181—190
[126] Capadona J R, Shanmuganathan K, Tyler D J, Rowan S J, Weder C. Science, 2008, 319: 1370—1374
[127] Beebe D J, Moore J S, Bauer J M, Qing Y, Liu R H, Devadoss C, Jo B H. Nature, 2000, 404: 588—590
[128] Ichino T, Asahi T, Kitahata H, Magome N, Agladze K, Yoshikawa K. J. Phys. Chem. C, 2008, 112: 3032—3035
[1] Liyuan Wang, Meng Zhang, Jing Wang, Ling Yuan, Lin Ren, Qingyu Gao. Bionic Locomotion of Self-oscillating gels [J]. Progress in Chemistry, 2022, 34(4): 824-836.
[2] Yuan Ling, Liu Yang, Yang Tao, Liu Haimiao, Gao Qingyu. Oscillations and Pattern Formation in Sulfur-Contained Reaction Systems [J]. Progress in Chemistry, 2014, 26(04): 529-544.
[3] Zhou Hongwei, Liang Enxiang, Zheng Zhaohui, Ding Xiaobin, Peng Yuxing. Smart Polymers Based on Belousov-Zhabotinsky Reaction [J]. Progress in Chemistry, 2011, 23(11): 2368-2376.
[4] Li Dongmei,He Zhanbo**. Marangoni Effect and Liquid Membrane Oscillation [J]. Progress in Chemistry, 2003, 15(01): 1-.