中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (05): 696-708 Previous Articles   Next Articles

• Review •

Recent Advances in Application of Biomimetic Superhydrophobic Surfaces

Chen Yu1,3, Xu Jiansheng1, Guo Zhiguang2,3*   

  1. 1. School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
    2. Key Laboratory of Green Preparation and Application for Materials, Ministry of Education, Hubei University, Wuhan 430062, China;
    3. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received: Revised: Online: Published:
PDF ( 2744 ) Cited
Export

EndNote

Ris

BibTeX

In the recent decades, superhydrophobic surfaces have attracted increasing attention in both fundamental research and practical applications due to their water-repellent and self-cleaning properties, inspired from plant leaves in nature, such as lotus leaf with special wettability and fine micro-structures on their surfaces. In this feature article, we review two classical wettability models and mainly focus on the development of the potential applications of biomimetic superhydrophobic surfaces in the last three years, including super-oil-repellent surfaces, micro-fluidics, wetting conversion, smart surfaces, and anti-icing. Finally, the promising applications of biomimetic superhydrophobic surfaces in the future are proposed.

Contents
1 Introduction
2 Basic principles of solid surface wettability
3 Applications of bio-inspired superhydrophobic surfaces
3.1 Super-oil-repellent surfaces
3.2 Superhydrophobic surface with wetting conversion
3.3 Solid wettability response to external conditions
3.4 Microfluidics for superhydrophobic surfaces
3.5 Anti-icing for superhydrophobic surfaces
3.6 Other applications
4. Conclusions and outlook

CLC Number: 

[1] Barthlott W, Neinhuis C. Planta, 1997, 202: 1—8
[2] Guo Z G, Liu W M. Plant Science, 2007, 172: 1103—1112
[3] Guo Z G, Liu W M, Su B L. J. Colloid Interface Sci., 2011, 353: 335—355
[4] Hu D L, Chan B, Bush J W M. Nature, 2003, 424: 663—666
[5] Gao X F, Jiang L. Nature, 2004, 432: 36—36
[6] Zheng Y M, Gao X F, Jiang L. Soft Matter, 2007, 3: 178—182
[7] Gao X F, Yan X, Yao X, Xu L, Zhang K, Zhang J H, Yang B, Jiang L. Adv. Mater., 2007, 19: 2213—2217
[8] Lee W, Jin M K, Yoo W C, Lee J K. Langmuir, 2004, 20: 7665—7669
[9] Parker A R, Lawrence C R. Nature, 2001, 414: 33—34
[10] Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J, Jiang L. Nature, 2010, 463: 640—643
[11] Liu M J, Wang S T, Wei Z X, Song Y L, Jiang L. Adv. Mater., 2009, 21: 665—669
[12] Zhang Y B, Chen Y, Shi L, Li J, Guo Z G. J. Mater. Chem., 2012, 22: 799—815
[13] Guo Z G, Fang J, Hao J C, Liang Y M, Liu W M. ChemPhysChem, 2006, 7: 1674—1677
[14] Guo Z G, Zhou F, Hao J C, Liu W M. J. Am. Chem. Soc., 2005, 127: 15670—15671
[15] Guo Z G, Liu W M, Su B L. Nanotechnology, 2008, 19: art. no. 445608
[16] Guo Z G, Liu W M. Applied Physics Letters, 2010, 97: art. no. 243701
[17] Young T. Philos. Trans. R. Soc., 1805, 95: 65—87
[18] Wenzel R N. Indust. Eng. Chem., 1936, 28: 988—994
[19] Cassie A B D, Baxter S. Trans. Faraday Soc., 1944, 40: 546—551
[20] Bico J, Thiele U, Quéré D. Colloids Surf. A, 2002, 206: 41—46
[21] Quéré D, Lafuma A. Nat. Mater., 2003, 2: 457—460
[22] Bhushan B, Jung Y C. J. Phys. Condens. Matter., 2008, 20: art. no. 225010
[23] Nosonovsky M, Bhushan B. Ultramicroscopy, 2007, 107: 969—979
[24] He B, Patankar N A, Lee J. Langmuir, 2003, 19: 4999—5003
[25] Nosonovsky M, Bhushan B. Nano Lett., 2007, 7: 2633—2637
[26] Patankar N A. Langmuir, 2004, 20: 7097—7102
[27] Bormashenko E, Pogreb R, Whyman G, Erlich M. Langmuir, 2007, 23: 6501—6503
[28] Guo Z G, Su B L. Appl. Phys. Lett., 2011, 99: art. no. 082106
[29] Lafuma A, Quéré D. Nat. Mater., 2003, 2: 457—460
[30] Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T, Zeng X C. Proc. Natl. Acad. Sci. USA, 2009, 106: 8435—8440
[31] Gleiche M, Chi L F, Fuchs H. Nature, 2000, 403: 173—175
[32] ner D, McCarthy T J. Langmuir, 2000, 16: 7777—7782
[33] Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K. Langmuir, 2002, 18: 5818—5822
[34] Cao L L, Hu H H, Gao D. Langmuir, 2007, 23: 4310—4314
[35] Marmur A. Langmuir, 2008, 24: 7573—7579
[36] Cao L L, Price T P, Weiss M, Gao D. Langmuir, 2008, 24: 1640—1643
[37] Chhatre S S, Choi W, Tuteja A, Park K C, Mabry J M, Mckinley G H, Cohen R E. Langmuir, 2010, 26: 4027—4035
[38] Li H J, Wang X B, Song Y L, Liu Y Q, Li Q S, Jiang L, Zhu D B. Angew. Chem., 2001, 113: 1793—1796
[39] Xie Q D, Xu J, Feng L, Jiang L, Tang W H, Luo X D, Han C C. Adv. Mater., 2004, 16: 302—305
[40] Feng L, Jiang L. Adv. Mater., 2006, 18: 3063—3078
[41] Zimmermann J, Rabe M, Artus G J R, Seeger S. Soft Matter, 2008, 4: 450—452
[42] Darmanin T, Guittard F. J. Am. Chem. Soc., 2009, 131: 7928—7933
[43] Steele A, Bayer I, Loth E. Nano Lett., 2009, 9: 501—505
[44] Tuteja A, Choi W, Ma M L, Mabry J M, Mazzella S A, Rutledge G C, McKinley G H, Cohen R E. Science, 2007, 318: 1618—1622
[45] Tuteja A, Choi W, Mabry J M, McKinley G H, Cohen R E. Proc. Natl. Acad. Sci. USA, 2008, 105: 18200—18205
[46] Choi W, Tuteja A, Chhatre S, Mabry J M, Cohen R E, McKinley G H. Adv. Mater., 2009, 21: 2190—2195
[47] Wu W C, Wang X L, Wang D A, Chen M, Zhou F, Liu W M, Xue Q J. Chem. Commun., 2009, 9: 1043—1045
[48] Zhang J P, Seeger S. Angew. Chem. Int. Ed., 2011, 50: 6652—6656
[49] Meng H F, Wang S T, Xi J M, Tang Z Y, Jiang L. J. Phys. Chem. C, 2008, 112: 11454—11458
[50] Feng L, Zhang Y N, Xi J M, Zhu Y, Wang N, Xia F, Jiang L. Langmuir, 2008, 24: 4114—4119
[51] Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P, Kenny T W, Fearing R, Full R J. Nature, 2000, 405: 681—685
[52] Hansen W R, Autumn K. Proc. Natl. Acad. Sci. USA, 2005, 102: 385—389
[53] Northen M T, Greiner C, Arzt E, Turner K L. Adv. Mater., 2008, 20: 3905—3909
[54] Qu L T, Dai L M, Stone M, Xia Z H, Wang Z L. Science, 2008, 322: 238—242
[55] Chan E P, Smith E J, Hayward R C, Crosby A J. Adv. Mater., 2008, 20: 711—716
[56] Reddy S, Arzt E, del Campon A. Adv. Mater., 2007, 19: 3833—3837
[57] Sun T L, Feng L, Gao X F, Jiang L. Acc. Chem. Res., 2005, 38: 644—652
[58] Bhushan B, Nosonovsky M, Jung Y C. J. R. Soc. Interface, 2007, 4: 643—648
[59] Lai Y K, Lin C J, Huang J Y, Zhuang H F, Sun L, Nguyen T. Langmuir, 2008, 24: 3867—3873
[60] Zhao N, Xie Q D, Kuang X, Wang S Q, Li Y F, Lu X Y, Tan S X, Shen J, Zhang X L, Xu J, Han C C. Adv. Funct. Mater., 2007, 17: 2739—2745
[61] Ishii D, Yabu H, Shimomura M. Chem. Mater., 2009, 21: 1799—1801
[62] Huang X J, Kin D H, Im M, Lee J H, Yoon J B, Chio Y K. Small, 2009, 5: 90—94
[63] Di Mundo R, Palumbo F, D'Agostino R. Langmuir, 2008, 24: 5044—5051
[64] Tserepi A D, Schofield W C E, Roucoules V, Badyal J P S. Langmuir, 2003, 19: 3432—3438
[65] Yao Y, Dong X, Hong S, Ge H, Han C C. Macrmol. Rapid Commun., 2006, 27: 1627—1631
[66] Lafuma A, Quéré D. Nat. Mater., 2003, 2: 457—460
[67] Feng X J, Feng L, Jin M H, Zhai J, Jiang L, Zhu D B. J. Am. Chem. Soc., 2004, 126: 62—63
[68] Xu L B, Chen W, Mulchandani A, Yan Y S. Angew. Chem. Int. Ed., 2005, 44: 6009—6012
[69] Sun T L, Wang G J, Feng L, Liu B Q, Ma Y M, Jiang L, Zhu D B. Angew. Chem. Int. Ed., 2004, 43: 357—360
[70] Zhang J L, Lu X Y, Huang W H, Han Y C. Macromol. Rapid Commun., 2005, 26: 477—480
[71] Zhao B, Brittain W J. Macromolecules, 2000, 33: 8813—8820
[72] Lai Y K, Gao X F, Zhuang H F, Lin C J, Jiang L. Adv. Mater., 2009, 21: 3799—3803
[73] Krupenkin T N, Taylor J A, Schneider T M, Yang S. Langmuir, 2004, 20: 3824—3827
[74] Krupenkin T, Taylor J A, Kolodner P, Hodes M. Bell Labs Tech. J., 2005, 10: 161—170
[75] Dhindsa M S, Smith N R, Heikenfeld J, Rack P D, Fowlkes J D, Doktycz M J, Melechko A V, Simpson M L. Langmuir, 2006, 22: 9030—9034
[76] Tian D L, Chen Q W, Nie F Q, Xu J J, Song Y L, Jiang L. Adv. Mater., 2009, 21: 3744—3749
[77] Ahuja A, Taylor J A, Lifton V, Sidorenko A A, Salamon T R, Lobaton E J, Kolodner P, Krupenkin T N. Langmuir, 2008, 24: 9—14
[78] Kim T I, Tahk D, Lee H H. Langmuir, 2009, 25: 6576—6579
[79] Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T, Zeng X C. Proc. Natl. Acad. Sci. USA, 2009, 106: 8435—8440
[80] Liu G M, Fu L, Rode A V, Graig V S J. Langmuir, 2011, 27: 2595—2600
[81] Liu M J, Nie F Q, Wei Z X, Song Y L, Jiang L. Langmuir, 2010, 26: 3993—3997
[82] Lin B C, Long Z C, Liu X, Qin J H. Adv. Mater., DOI: 10.1002/biot. 200600104
[83] Dittrich P S, Manz A. Nature Rev. Drug Discov., 2006, 5: 210—218
[84] Lee C C, Sui G D, Elizarov A, Shu C Y J, Shin Y S, Dooley A N, Huang J, Daridon A, Wyatt P, Stout D, Kolb H C, Witte O N, Satyamurthy N, Heath J R, Phelps M E, Quake S R, Tseng H R. Science, 2005, 310: 1793—1796
[85] Matosevic S, Szita N, Baganz F. Adv. Mater., 2011, 86: 325—334
[86] Cooney C, Chen C Y, Emerling M, Nadim A, Sterling J D. Microfluid. Nanofluid., 2006, 2: 435—446
[87] Bormashenko E, Bormashenko Y. Langmuir, 2011, 27: 3266—3270
[88] Shirtcliffe N J, McHale G, Newton M I. Langmuir, 2009, 25: 14121—14128
[89] Jokinen V, Sainiemi L, Franssila S. Adv. Mater., 2008, 20: 3453—3465
[90] Mertaniemi H, Jokinen V, Sainiemi L, Franssila S, Marmur A, Ikkala O, Ras R H A. Adv. Mater., 2011, 26: 2911—2914
[91] Jafari R, Menini R, Farzaneh M. Appl. Surf. Sci., 2010, 257: 1540—1543
[92] Menini R, Farzaneh M. Surf. Coat. Technol., 2009, 203: 1941—1946
[93] Ryerson C C. Cold Reg. Sci. Technol., 2011, 65: 97—110
[94] He M, Wang J X, Li H L, Jin X L, Wang J J, Liu B Q, Song Y L. Soft Matter, 2010, 6: 2396—2399
[95] Wang F C, Li C R, Lv Y Z, Lv F C, Du Y F. Cold Reg. Sci. Technol., 2010, 62: 29—33
[96] Saito H, Takai K, Yamauchi G. Surf. Coat. Int., 1997, 80: 168—171
[97] Varanasi K K, Deng T, Smith J D, Hsu M, Bhate N. Applied Physics Letters, 2010, 97: art. no. 234102
[98] Cao L L, Jones A K, Sikka V K, Wu J Z, Gao D. Langmuir, 2009, 25: 12444—12448
[99] Farhadi S, Farzaneh M, Kulinich S A. Applied Surface Science, 2011, 257: 6264—6269
[100] Menini R, Farzaneh M. Surface & Coatings Technology, 2009, 203: 1941—1946
[101] Tsujii K, Yamamoto K T, Onda T, Shibuichi S. Angew. Chem. Int. Ed., 1997, 36: 1011—1012
[102] Feng X, Jiang L. Adv. Mater., 2006, 18: 3063—3078
[103] Shibuichi S, Onda T, Satoh N, Tsujii K. Langmuir, 1996, 12: 2125—2127
[104] Feng L, Zhang Z Y, Mai Z H, Ma Y M, Liu B Q, Jiang L, Zhu D B. Angew. Chem. Int. Ed., 2004, 43: 2012—2014
[105] Crick C R, Parkin I P. Chem. -Eur. J., 2010, 16: 3568—3588
[106] Zhang X, Shi F, Niu J, Jiang Y G, Wang Z Q. J. Mater. Chem., 2008, 18: 621—633
[107] Pan Q M, Wang M, Wang H B. Appl. Surf. Sci., 2008, 254: 6002—6006
[108] Jin M H, Wang J, Yao X, Liao M Y, Zhao Y, Jiang L. Adv. Mater., 2011, 23: 2861—2864
[109] Garnett E, Yang P. Nano Lett., 2010, 10: 1082—1087
[110] Zhu J, Hsu C M, Yu Z, Fan S, Cui Y. Nano Lett., 2010, 10: 1979—1984
[111] Clapham P B, Hutley M C. Nature, 1973, 244: 281—282
[112] Lee C, Bae S Y, Mobasser S, Manohara H. Nano Lett., 2005, 5: 2438—2442
[113] Koynov S, Brandt M S, Stutzmann M. Appl. Phys. Lett., 2006, 88: art. no. 203107
[114] Xi J Q, Schubert M F, Kim J K, Schubert E F, Chen M, Lin S Y, Liu W, Smart J A. Nat. Photonics, 2007, 1: 176—179
[115] Xiu Y H, Zhu L B, Hess D W, Wong C P. Nano Letter, 2007, 7: 3388—3393
[116] Sun C H, Min W L, Linn N C, Jiang P, Jiang B. Appl. Phys. Lett., 2007, 91: art. no. 231105
[117] Sainiemi L, Jokinen V, Shah A, Shpak M, Aura S, Suvanto P, Franssila S. Adv. Mater., 2011, 23: 122—126
[118] Sainiemi L, Keskinen H, Aromaa M, Luosujrvi L, Grigoras K, Kotiaho T, Mkel J M, Franssila S. Nanotechnology, 2007, 18: art. no. 505303
[119] Lo H C, Das D, Hwang J S, Chen K H. Appl. Phys. Lett., 2003, 18: art. no. 1420
[120] Ting C J, Huang M C, Tsai H Y, Chou C P, Fu C C. Nanotechnology, 2008, 19: art. no. 205301
[121] Parker A R, Lawrence C R. Nature, 2001, 414: 33—34
[122] Zhai L, Berg M C, Cebeci F C, Kim Y, Milwid J M, Rubner M F, Cohen R E. Nano Lett., 2006, 6: 1213—1217
[123] Dorrer C, Ruhe J. Langmuir, 2008, 24: 6154—6158
[124] Zheng Y, Bai H, Huang Z, Tian X, Nie F Q, Zhao Y, Zhai J, Jiang L. Nature, 2010, 463: 640—643
[125] Kulinich S A, Farhadi S, Nose K, Du X W. Langmuir, 2011, 27: 25—29
[126] Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J. ACS Nano, 2010, 4: 7699—7707
[127] Tourkine P, Le Merrer M, Quéré D. Langmuir, 2009, 25: 7214—7216
[128] He M, Wang J X, Li H L, Jin X L, Wang J J, Liu B Q, Song Y L. Soft Matter, 2010, 6: 2396—2399
[129] Bettinger C J, Langer R, Borenstein J T. Angew. Chem. Int. Ed., 2009, 48: 5406—5415
[130] Schweikl H, Muller R, Englert C, Hiller K A, Kujat R, Nerlich M, Schmalz G. J. Mater. Sci.: Mater. Med., 2007, 18: 1895—1905
[131] Marklein R A, Burdick J A. Adv. Mater., 2010, 22: 175—189
[132] Alves N M, Pashkuleva I H, Reis R L, Mano J F. Small, 2010, 6: 2208—2220
[133] Sun T L, Tan H, Han D, Fu Q, Jiang L. Small, 2005, 1: 959—963
[134] Oliveira S M, Song W L, Alves N M, Mano J F. Soft Matter, Doi: 10.1039/c1sm05943b
[135] Mundo R D, Nardulli M, Milella A, Favia P, D'Agostino R, Gristina R. Langmuir, 2011, 27: 4914—4921
[1] Xiaoguang Li, Xianglong Pang. Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations [J]. Progress in Chemistry, 2022, 34(8): 1760-1771.
[2] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[3] Yue Li, Yamei Lu, Pengfei Wang, Yingze Cao, Chun’ai Dai. Preparation and Application of Transparent Superhydrophobic Materials [J]. Progress in Chemistry, 2021, 33(12): 2362-2377.
[4] Luanluan Xue, Huizeng Li, An Li, Zhipeng Zhao, Yanlin Song. Droplet Self-Propulsion Based on Heterogeneous Surfaces [J]. Progress in Chemistry, 2021, 33(1): 78-86.
[5] Yonggang Guo, Yachao Zhu, Xin Zhang, Bingpeng Luo. Effects of Superhydrophobic Surface on Tribological Properties: Mechanism, Status and Prospects [J]. Progress in Chemistry, 2020, 32(2/3): 320-330.
[6] Jun Zhang, Lei Han, Yuan Zeng, Liang Tian, Haijun Zhang. Selective Oil/Water Separation Materials [J]. Progress in Chemistry, 2019, 31(1): 134-143.
[7] Lingang Hou, Lili Ma, Yichen Zhou, Yu Zhao, Yi Zhang, Jinmei He*. Application of Low Surface Energy Compounds to the Superwetting Materials [J]. Progress in Chemistry, 2018, 30(12): 1887-1898.
[8] Xinjuan Zeng, Li Wang, Pihui Pi, Jiang Cheng, Xiufang Wen, Yu Qian. Development and Research of Special Wettability Materials for Oil/Water Separation [J]. Progress in Chemistry, 2018, 30(1): 73-86.
[9] Changlu Zhou, Zhong Xin*. Fabrication, Properties and Applications of Functional Surface Based on Polybenzoxazine [J]. Progress in Chemistry, 2018, 30(1): 112-123.
[10] Haikun Zheng, Shinan Chang, Yuanyuan Zhao. Anti-Icing & Icephobic Mechanism and Applications of Superhydrophobic/Ultra Slippery Surface [J]. Progress in Chemistry, 2017, 29(1): 102-118.
[11] Qu Mengnan*, Hou Lingang, He Jinmei*, Ma Xuerui, Yuan Mingjuan, Liu Xiangrong. Research and Development of Functional Superhydrophobic Materials [J]. Progress in Chemistry, 2016, 28(12): 1774-1787.
[12] Tian Miaomiao, Li Xuemei, Yin Yong, He Tao, Liu Jindun. Preparation of Superhydrophobic Membranes and Their Application in Membrane Distillation [J]. Progress in Chemistry, 2015, 27(8): 1033-1041.
[13] Zhan Yuanyuan, Liu Yuyun, Lv Jiuan, Zhao Yong, Yu Yanlei. Photoresponsive Surfaces with Controllable Wettability [J]. Progress in Chemistry, 2015, 27(2/3): 157-167.
[14] Zhang Kaiqiang, Li Bo, Zhao Yunhui, Li Hui, Yuan Xiaoyan. Functional POSS-Containing Polymers and Their Applications [J]. Progress in Chemistry, 2014, 26(0203): 394-402.
[15] Yan Yingdi, Luo Nengzhen, Xiang Xiangao, Xu Yiming, Zhang Qinghua, Zhan Xiaoli. Fabricating Mechanism and Preparation of Anti-Icing & Icephobic Coating [J]. Progress in Chemistry, 2014, 26(01): 214-222.