中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (04): 650-658 Previous Articles   

• Review •

Controlled Hydrogen Generation by Reaction of Aluminum with Water

Ma Guanglu, Zhuang Dawei, Dai Hongbin, Wang Ping   

  1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
  • Received: Revised: Online: Published:
PDF ( 1438 ) Cited
Export

EndNote

Ris

BibTeX

Aluminum is the most abundant crustal metallic element on the earth and 100% recycled in theory. Controlled hydrogen generation (HG) by reaction of aluminum with water could provide a renewable energy cycle to address the global energy problem. In this perspective, we present the state of art in the principle, mechanism, approaches, and hydrogen generator of HG from the reaction of aluminum with water, and further discuss some remaining problems in the development of aluminum-based HG system. The key to the HG by the reaction of aluminum with water is how to disrupt/inhibit a native/regeneration coherent and adherent passivation film of aluminum surface. The fast kinetics is desirable in developing the aluminum-based HG system for the practical application. The design of hydrogen generator should focus on the utilization of reaction heat to preheat fuel, the recycle of water from the fuel cell, the fuel cartridges and the process of separation by the membrane. The use of recycled scrap aluminum will provide a reasonable hydrogen cost, thus promoting its commercial applications.
Contents
1 Introduction
2 The principle and mechanism of hydrogen generation from reaction of aluminum with water
3 Approaches of hydrogen generation from reaction of aluminum with water
3.1 Hydroxide promoters
3.2 Oxide/salt promoters
3.3 Aluminum alloying
3.4 Combined hydroxide and oxide/salt promoters
4 Design of hydrogen generator of hydrogen generation of reaction of aluminum with water
5 Cost and recycling of spent fuel of hydrogen generation from reaction of aluminum with water
6 Conclusions and outlook

CLC Number: 

[1] Van den Berg A W C, Areán C O. Chem. Commun., 2008, 668-681
[2] Demirci U B, Miele P, Garin F. Catal. Today, 2011, 170 (1): 1-2
[3] Zeng K, Zhang D K. Prog. Energy Combust. Sci., 2010, 36 (3): 307-326
[4] Osterloh F E. Chem. Mater., 2008, 20 (1) : 35-54
[5] Cho Y S, Kim J H. Int. J. Hydrogen Energy, 2011, 36 (14): 8192-8202
[6] Deng Z Y, Ferreira J M F, Sakka Y. J. Am. Ceram. Soc., 2008, 91 (12): 3825-3834
[7] Petrovic J, Thomas G. Reaction of Aluminium with Water to Produce Hydrogen, White Paper for U.S. Department of Energy, 2008. http://www1.eere.energy.gov/hydrogen-andfuelcells/pdfs/aluminium_water_hydrogen.pdf
[8] Wang H Z, Leung D Y C, Leung M K H, Ni M. Renew. Sust. Energ. Rev., 2009, 13 (4): 845-853
[9] Business Wire. AlumiFuel Power, Inc. Announces Delivery of Its First Production Hydrogen Generator. (2009-12-30) http://www.businesswire.com/multimedia/home/20091230005039/en/1898928/AlumiFuel-Power-Announces-Delivery-Production-Hydrogen-Generator
[10] Digne M, Sautet P, Raybaud P, Toulhoat H, Artacho E. J. Phys. Chem. B, 2002, 106 (20): 5155-5162
[11] Roach P J, Woodward W H, Castleman A W, Reber A C, Khanna S N. Science, 2009, 323 (5913): 492-495
[12] Phillip Broadwith. Water Split with Aluminium. (2009-01-28) http://www.rsc.org/chemistryworld/News/2009/January/28010901.asp
[13] Shimojo F, Ohmura S, Kalia R K, Nakano A, Vashishta P. Phys. Rev. Lett., 2010, 104 (12): art. no. 126102
[14] Russo M F, Li R, Mench M, van Duin A C T. Int. J. Hydrogen Energy, 2011, 36 (10): 5828-5835
[15] Levin I, Brandon D. J. Am. Ceram. Soc., 1998, 81 (8): 1995-2012
[16] Pyun S I, Moon S M. J. Solid State Electrochem., 2000, 4 (5): 267-272
[17] Belitskus D. J. Electrochem. Soc., 1970, 117 (8): 1097-1099
[18] Martinez S S, Benites W L, Gallegos A A A, Sebastian P J. Sol. Energ. Mat. Sol. C, 2005, 88 (2): 237-243
[19] Martinez S S, Sanchez L A, Gallegos A A A, Sebastian P J. Int. J. Hydrogen Energy, 2007, 32 (15): 3159-3162
[20] Soler L, Macanás J, Muñoz M, Casado J. J. Power Sources, 2007, 169 (1): 144-149
[21] Deng Z Y, Ferreiraw J M F, Tanaka Y, Ye J H. J. Am. Ceram. Soc., 2007, 90 (5): 1521-1526
[22] Deng Z Y, Tang Y B, Zhu L L, Sakka Y, Ye J H. Int. J. Hydrogen Energy, 2010, 35 (18): 9561-9568
[23] Dupiano P, Stamatis D, Dreizin E L. Int. J. Hydrogen Energy, 2011, 36 (8): 4781-4791
[24] Skrovan J, Alfantazi A, Troczynski T. J. Appl. Electrochem., 2009, 39 (10): 1695-1702
[25] Alinejad B, Mahmoodi K. Int. J. Hydrogen Energy, 2009, 34 (19): 7934-7938
[26] Mahmoodi K, Alinejad B. Int. J. Hydrogen Energy, 2010, 35 (11): 5227-5232
[27] Soler L, Candela A M, Macanás J, Muñoz M, Casado J. J. Power Sources, 2009, 192 (1): 21-26
[28] Soler L, Candela A M, Macanás J, Muñoz M, Casado J. Int. J. Hydrogen Energy, 2010, 35 (3): 1038-1048
[29] Macanás J, Soler L, Candela A M, Muñoz M, Casado J. Energy, 2011, 36 (5): 2493-2501
[30] Ziebarth J T, Woodall J M, Kramer R A, Choi G. Int. J. Hydrogen Energy, 2011, 36 (9): 5271-5279
[31] Wang W, Chen D M, Yang K. Int. J. Hydrogen Energy, 2010, 35 (21): 12011-12019
[32] Fan M Q, Xu F, Sun L X. Int. J. Hydrogen Energy, 2007, 32 (14): 2809-2815
[33] Fan M Q, Sun L X, Xu F. Energy Fuels, 2009, 23: 4562-4566
[34] Parmuzina A V, Kravchenko O V. Int. J. Hydrogen Energy, 2008, 33 (12): 3073-3076
[35] Parmuzina A V, Kravchenko O V, Bulychev B M, Shkol'nikov E I, Burlakova A G. Russ. Chem. Bull., 2009, 58 (3): 493-498
[36] Zhao Z W, Chen X Y, Hao M M. Energy, 2011, 36 (5): 2782-2787
[37] Rosenband V, Gany A. Int. J. Hydrogen Energy, 2010, 35 (20): 10898-10904
[38] Fan M Q, Sun L X, Xu F, Mei D S, Chen D, Chai W X, Huang F L, Zhang Q M. Int. J. Hydrogen Energy, 2011, 36 (16): 9791-9798
[39] Eom K S, Kwon J Y, Kim M J, Kwon H S. J. Mater. Chem., 2011, 21 (34): 13047-13051
[40] Eom K S, Kim M J, Oh S K, Cho E A, Kwon H S. Int. J. Hydrogen Energy, 2011, 36 (18): 11825-11831
[41] Jung C R, Kundu A, Ku B, Gil J H, Lee H R, Jang J H. J. Power Sources, 2008, 175 (1): 490-494
[42] Dai H B, Ma G L, Xia H J, Wang P. Energy Environ. Sci., 2011, 4 (6): 2206-2212
[43] Shkolnikov E, Vlaskin M, Iljukhin A, Zhuk A, Sheindlin A. J. Power Sources, 2008, 185 (2): 967-972
[44] Wang E D, Shi P F, Du C Y, Wang X R. J. Power Sources, 2008, 181 (1): 144-148
[45] 梁艳(Liang Y), 王平(Wang P), 戴洪斌(Dai H B). 化学进展(Progress in Chemistry), 2009, 21 (10): 2219-2228
[46] Wang P, Kang X D. Dalton Trans., 2008, 5400-5413
[47] Efficiency E. U.S. Energy Requirements for Aluminum Production: Historical Perspective, Theoretical Limits and Current Practices, 2007. http://www1.eere.energy.gov/industry/aluminum/pdfs/al_theoretical.pdf
[48] Wang H, Leung D Y C, Leung M K H. Appl. Energy, 2012, 90(1): 100-105
[49] Dusza J, Sajgalik P. Int. J. Mater. Prod. Tec., 2005, 23 (1/2): 91-120
[50] Taufiq-Yap Y H, Abdullah N F, Basri M. Sains Malaysiana, 2011, 40 (6): 587-594
[51] Ching W Y, Ouyang L Z, Rulis P, Yao H Z. Phys. Rev. B, 2008, 78 (1): art. no. 014106
[52] Hollingbery L A, Hull T R. Polym. Degrad. Stab., 2010, 95 (12): 2213-2225
[53] Galbraith A, Bullock S, Manias E. Fundamentals of Pharmacology: A Text for Nurses and Health Professionals. 2nd ed. Harlow: Pearson, 1999. 482
[54] Soler L, Macanás J, Muñoz M, Casado J. Int. J. Hydrogen Energy, 2007, 32 (18): 4702-4710
[55] Dai H B, Ma G L, Xia H J, Wang P. Fuel Cells, 2011, 11 (3): 424-430
[56] Dai H B, Ma G L, Kang X D, Wang P. Catal. Today, 2011, 170 (1): 50-55
[1] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[2] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[3] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[4] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[5] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[6] Fengguo Liu, Bo Wang, Lianyu Zhang, Aimin Liu, Zhaowen Wang, Zhongning Shi. Application of Ionic Liquids in Aluminum and Alloy Electrodeposition [J]. Progress in Chemistry, 2020, 32(12): 2004-2012.
[7] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.
[8] Zhao Chong, Xu Fen*, Sun Lixian*, Fan Minghui, Zou Yongjin, Chu Hailiang. Hydrogen Generation by Al-Based Materials Hydrolysis [J]. Progress in Chemistry, 2016, 28(12): 1870-1879.
[9] Wang Huali, Bai Ying, Chen Shi, Wu Feng, Wu Chuan. Ambient Temperature Rechargeable Aluminum Batteries and Their Key Materials [J]. Progress in Chemistry, 2013, 25(08): 1392-1400.
[10] Liang Yan Wang Ping Dai Hongbin. Hydrogen Generation from Catalytic Hydrolysis of Sodium Borohydride Solution [J]. Progress in Chemistry, 2009, 21(10): 2219-2228.
[11] Shangru Zhai1,2**,Li Wei1,Dongjiang Yang2,Dong Wu2,Yuhan Sun2 . Preparation and Applications of Silica/Aluminum-Based Micro/Mesoporous Composite Molecular Sieves [J]. Progress in Chemistry, 2006, 18(10): 1330-1337.
[12] Luan Zhaokun**,Chen Zhaoyang,Li Yanzhong. Progress in the Species of Al30 in Hydrolytic Polymeric Aluminum Solutions [J]. Progress in Chemistry, 2005, 17(06): 1034-1040.
[13] Wu Chuan,Zhang Huamin*,Yi Baolian. Recent Advances in Hydrogen Generation with Chemical Methods [J]. Progress in Chemistry, 2005, 17(03): 423-429.
[14] . Progress in Hydrogen Generation Using Plasmas [J]. Progress in Chemistry, 2005, 17(01): 69-77.
[15] Zhang Zhanjin1,2,Wan Boshun1*,Chen Huilin1. Applications of Chiral Aluminum Catalysts to Asymmetric Synthesis [J]. Progress in Chemistry, 2003, 15(06): 487-.