中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (04): 616-627 Previous Articles   Next Articles

• Review •

Electrochemical Sensors and Biosensors Based on Nanomaterials: A New Approach for Detection of Organic Micropollutants

Wei Yan1,2,3, Liu Zhonggang3, Gao Chao3, Wang Lun2, Liu Jinhuai3, Huang Xingjiu3   

  1. 1. Department of Chemistry, Wannan Medical College, Wuhu 24100;
    2. College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China;
    3. Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
  • Received: Revised: Online: Published:
PDF ( 1281 ) Cited
Export

EndNote

Ris

BibTeX

The presence of organic micropollutants in an aquatic ecosystem impacts directly or indirectly to biota and human being, which results in an increasing demand for the detection of organic micropollutants. In this review we examine recent development and current status of electrochemical detection of organic micropullutants using electrochemical sensors and biosensors based on nanomaterials, and discuss the sensing principles of the nanomaterials modified electrodes in these sensors. Emphasis is given to the important effect of related nanomaterials on the detection of organic micropullutants. Finally, key challenges and opportunities on the directions toward future development are outlined.
Contents
1 Introduction
2 Organophosphate and carbamate pesticides
2.1 Detection by electrochemical enzyme biosensors based on nanomaterials
2.2 Detection by electrochemical non-enzyme sensors based on nanomaterials
3 Phenolic compounds
3.1 Detection by electrochemical enzyme biosensors based on nanomaterials
3.2 Detection by electrochemical non-enzyme sensors based on nanomaterials
4 Nitroaromatic compounds
5 Other targets of organic micropollutants
6 Conclusions and outlook

CLC Number: 

[1] Liu G D, Lin Y H. Anal. Chem., 2005, 77: 5894-5901
[2] Juhasz A L, Naidu R. Int. Biodeter. Biodegr., 2000, 45: 57-88
[3] Wang C P, Lin M H, Liu Y J, Lei H T. Electrochim. Acta, 2011, 56: 1988-1994
[4] Matthews J, Zacharewski T. Toxicol. Sci., 2000, 53: 326-339
[5] Espinosa M, Atanasov P, Wilkins E. Electroanalysis, 1999, 11: 1055-1062
[6] Palchetti I, Cagnini A, DelCarlo M, Coppi C, Mascini M, Turner A P F. Anal. Chim. Acta, 1997, 337: 315-321
[7] Liu Y, Yu Y Y, Yang Q Y, Qu Y H, Liu Y M, Shi G Y, Jin L T. Sens. Actuator B-Chem., 2008, 131: 432-438
[8] Brinkman U A T. Chromatographia, 1997, 45: 445-449
[9] Jauregui O, Galceran M T. Anal. Chim. Acta, 1997, 340: 191-199
[10] Orejuela E, Silva M. Analyst, 2002, 127: 1433-1439
[11] Liu Y, Mills R C, Boncella J M, Schanze K S. Langmuir, 2001, 17: 7452-7455
[12] Sohn H, Sailor M J, Magde D, Trogler W C. J. Am. Chem. Soc., 2003, 125: 3821-3830
[13] Poerschmann J, Zhang Z Y, Kopinke F D, Pawliszyn J. Anal. Chem., 1997, 69: 597-600
[14] Chen P S, Huang S D. Talanta, 2006, 69: 669-675
[15] Qu Y H, Min H, Wei Y Y, Xiao F, Shi G Y, Li X H, Jin L T. Talanta, 2008, 76: 758-762
[16] Filanovsky B, Markovsky B, Bourenko T, Perkas N, Persky R, Gedanken A, Aurbach D. Adv. Funct. Mater., 2007, 17: 1487-1492
[17] Du D, Chen S, Cai J, Zhang A. Biosens. Bioelectron., 2007, 23: 130-134
[18] Gong J M, Wang L Y, Miao X J, Zhang L Z. Electrochem. Commun., 2010, 12: 1658-1661
[19] Su S, He Y, Zhang M L, Yang K, Song S P, Zhang X H, Fan C H, Lee S T. Appl. Phys. Lett., 2008, 93: art. no. 023113
[20] Ivanov A N, Younusov R R, Evtugyn G A, Arduini F, Moscone D, Palleschi G. Talanta, 2011, 85: 216-221
[21] Liu Y X, Lan D, Wei W Z. J. Electroanal. Chem., 2009, 637: 1-5
[22] Hrapovic S, Majid E, Liu Y, Male K, Luong J H T. Anal. Chem., 2006, 78: 5504-5512
[23] Zhang H X, Cao A M, Hu J S, Wan L J, Lee S T. Anal. Chem., 2006, 78: 1967-1971
[24] Arribas A S, Moreno M, Bermejo E, Perez J A, Roman V, Zapardiel A, Chicharro M. Electroanalysis, 2011, 23: 237-244
[25] Burda C, Chen X B, Narayanan R, El-Sayed M A. Chem. Rev., 2005, 105: 1025-1102
[26] Daniel M C, Astruc D. Chem. Rev., 2004, 104: 293-346
[27] Kandimalla V B, Ju H X. Chem. Eur. J., 2006, 12: 1074-1080
[28] Du D, Chen S Z, Cai J, Zhang A D. Talanta, 2008, 74: 766-772
[29] Du D, Ding J W, Cai J, Zhang A D. Sens. Actuator. B-Chem., 2007, 127: 317-322
[30] Du D, Ding J W, Tao Y, Chen X. Sens. Actuator. B-Chem., 2008, 134: 908-912
[31] Gong J M, Wang L Y, Zhang L Z. Biosens. Bioelectron., 2009, 24: 2285-2288
[32] Yin H S, Ai S Y, Xu J, Shi W J, Zhu L S. J. Electroanal. Chem., 2009, 637: 21-27
[33] Upadhyay S, Rao G R, Sharma M K, Bhattacharya B K, Rao V K, Vijayaraghavan R. Biosens. Bioelectron., 2009, 25: 832-838
[34] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297: 787-792
[35] Du D, Cai J, Song D D, Zhang A D. J. Appl. Electrochem., 2007, 37: 893-898
[36] Du D, Huang X, Cai J, Zhang A. Sens. Actuator. B-Chem., 2007, 127: 531-535
[37] Du D, Wang M H, Cai J, Tao Y, Tu H Y, Zhang A D. Analyst, 2008, 133: 1790-1795
[38] Du D, Wang M H, Cai J, Zhang A D. Sens. Actuator. B-Chem., 2010, 146: 337-341
[39] Du D, Ye X X, Cai J, Liu J A, Zhang A D. Biosens. Bioelectron., 2010, 25: 2503-2508
[40] Zamfir L G, Rotariu L, Bala C. Biosens. Bioelectron., 2011, 26: 3692-3695
[41] Liu G D, Lin Y H. Anal. Chem., 2006, 78: 835-843
[42] Firdoz S, Ma F, Yue X L, Dai Z F, Kumar A, Jiang B. Talanta, 2010, 83: 269-273
[43] Viswanathan S, Radecka H, Radecki J. Biosens. Bioelectron., 2009, 24: 2772-2777
[44] Somerset V S, Klink M J, Sekota M M C, Baker P G L, Iwuoha E I. Anal. Lett., 2006, 39: 1683-1698
[45] Jha N, Ramaprabhu S. Nanoscale, 2010, 2: 806-810
[46] Du D, Wang M H, Cai J, Qin Y H, Zhang A D. Sens. Actuator. B-Chem., 2010, 143: 524-529
[47] Qu Y H, Sun Q, Xiao F, Shi G Y, Jin L T. Bioelectrochemistry, 2010, 77: 139-144
[48] Ozoemena K I, Zhao Z X, Nyokong T. Electrochem. Commun., 2005, 7: 679-684
[49] Nyokong T, Vilakazi S. Talanta, 2003, 61: 27-35
[50] Lin Y H, Lu F, Wang J. Electroanalysis, 2004, 16: 145-149
[51] Deo R P, Wang J, Block I, Mulchandani A, Joshi K A, Trojanowicz M, Scholz F, Chen W, Lin Y H. Anal. Chim. Acta, 2005, 530: 185-189
[52] Choi B G, Park H, Park T J, Kim D H, Lee S Y, Hong W H. Electrochem. Commun., 2009, 11: 672-675
[53] Ion A C, Ion I, Culetu A, Gherase D, Moldovan C A, Iosub R, Dinescu A. Mat. Sci. Eng. C-Mater., 2010, 30: 817-821
[54] Wu S, Zhang L L, Qi L, Tao S Y, Lan X Q, Liu Z G, Meng C G. Biosens. Bioelectron., 2011, 26: 2864-2869
[55] Wang K, Liu Q, Dai L N, Yan J J, Ju C, Qiu B J, Wu X Y. Anal. Chim. Acta, 2011, 695: 84-88
[56] Kang T F, Wang F, Lu L P, Zhang Y, Liu T S. Sens. Actuator. B-Chem., 2010, 145: 104-109
[57] Kumaravel A, Chandrasekaran M. J. Electroanal. Chem., 2010, 638: 231-235
[58] Li C Y, Wang Z G, Zhan G Q. Colloid. Surface B, 2011, 82: 40-45
[59] Xie C G, Li H F, Li S Q, Wu J, Zhang Z P. Anal. Chem., 2010, 82: 241-249
[60] Du D, Ye X, Zhang J, Zeng Y, Tu H, Zhang A, Liu D. Electrochem. Commun., 2008, 10: 686-690
[61] Tan X H, Li B H, Zhan G Q, Li C Y. Electroanalysis, 2010, 22: 151-154
[62] Zhou J H, Deng C Y, Si S H, Wang S E. Microchim. Acta, 2011, 172: 207-215
[63] Wang M, Li Z Y. Sens. Actuator. B-Chem., 2008, 133: 607-612
[64] Li C Y, Wang C F, Ma Y, Hu S S. Microchim. Acta, 2004, 148: 27-33
[65] Kumaravel A, Chandrasekaran M. J. Electroanal. Chem., 2011, 650: 163-170
[66] Zhang Y, Kang T F, Wan Y W, Chen S Y. Microchim. Acta, 2009, 165: 307-311
[67] Huang B A, Zhang W D, Chen C H, Yu Y X. Microchim. Acta, 2010, 171: 57-62
[68] Fan S S, Xiao F, Liu L Q, Zhao F Q, Zeng B Z. Sensor. Actuat. B-Chem., 2008, 132: 34-39
[69] Siswana M P, Ozoemena K I, Nyokong T. Electrochim. Acta, 2006, 52: 114-122
[70] Siswana M P, Ozoemena K I, Geraldo D A, Nyokong T. J. Solid State Electr., 2010, 14: 1351-1358
[71] Moraes F C, Mascaro L H, Machado S A S, Brett C M A. Talanta, 2009, 79: 1406-1411
[72] Myers M, Cooper J, Pejcic B, Baker M, Raguse B, Wieczorek L. Sens. Actuator. B-Chem., 2010, 155: 154-158
[73] Liu S Q, Yu J H, Ju H X. J. Electroanal. Chem., 2003, 540: 61-67
[74] Li Y F, Liu Z M, Liu Y L, Yang Y H, Shen G L, Yu R Q. Anal. Biochem., 2006, 349: 33-40
[75] Zhao Q, Guan L H, Gu Z N, Zhuang Q K. Electroanalysis, 2005, 17: 85-88
[76] Zhao J W, Wu D H, Zhi J F. Bioelectrochemistry, 2009, 75: 44-49
[77] Kafi A K M, Chen A C. Talanta, 2009, 79: 97-102
[78] Luo X L, Xu J J, Zhang Q, Yang G J, Chen H Y. Biosens. Bioelectron., 2005, 21: 190-196
[79] Su L, Mao L Q. Talanta, 2006, 70: 68-74
[80] Ndlovu T, Arotiba O A, Krause R W, Mamba B B. Int. J. Electrochem. Soc., 2010, 5: 1179-1186
[81] Chauke V P, Chidawanyika W, Nyokong T. Electroanalysis, 2011, 23: 487-496
[82] Tzang C H, Li C W, Zhao J L, Yang M S. Anal. Lett., 2005, 38: 1735-1746
[83] Wang J, Deo R P, Musameh M. Electroanalysis, 2003, 15: 1830-1834
[84] Liu X H, Ding Z, He Y H, Xue Z H, Zhao X P, Lu X Q. Colloid Surface B, 2010, 79: 27-32
[85] Phanthong C, Somasundrum M. Electroanalysis, 2008, 20: 1024-1027
[86] Wang X G, Wu Q S, Ding Y P. Electroanalysis, 2006, 18: 517-520
[87] Tu X M, Yan L S, Luo X B, Luo S L, Xie Q J. Electroanalysis, 2009, 21: 2491-2494
[88] Moghaddam A B, Ganjali M R, Dinarvand R, Razavi T, Riahi S, Rezaei-Zarchi S, Norouzi P. Mat. Sci. Eng. C-Bio. S., 2009, 29: 187-192
[89] Wu Y H. Sensor. Actuat. B-Chem., 2009, 137: 180-184
[90] Maduraiveeran G, Ramaraj R. Anal. Chem., 2009, 81: 7552-7560
[91] Wang F, Wang W B, Liu B H, Wang Z Y, Zhang Z P. Talanta, 2009, 79: 376-382
[92] Wiyaratn W, Hrapovic S, Liu Y L, Surareungchai W, Luong J H T. Anal. Chem., 2005, 77: 5742-5749
[93] Dai H, Xu H F, Wu X P, Lin Y Y, Wei M D, Chen G N. Talanta, 2010, 81: 1461-1466
[94] Kim G Y, Kang M S, Shim J, Moon S H. Sens. Actuator. B-Chem., 2008, 133: 1-4
[95] Zhao G H, Li P Q, Nong F Q, Li M F, Gao J X, Li D M. J. Phys. Chem. C, 2010, 114: 5906-5913
[96] Manisankar P, Sundari P L A, Sasikumar R, Roy D J. Electroanalysis, 2008, 20: 2076-2083
[97] Pedrosa V A, Epur R, Benton J, Overfelt R A, Simonian A L. Sens. Actuator. B-Chem., 2009, 140: 92-97
[98] He J J, Fugetsu B, Tanaka S. J. Electroanal. Chem., 2010, 638: 46-50
[99] Chicharro M, Bermejo E, Moreno M, Sanchez A S, Zapardiel A, Rivas G. Electroanalysis, 2005, 17: 476-482
[100] Siswana M, Ozoemena K I, Nyokong T. Sensors-Basel, 2008, 8: 5096-5105
[101] Chen L J, Zeng G M, Zhang Y, Tang L, Huang D L, Liu C, Pang Y, Luo J. Anal. Biochem., 2010, 407: 172-179
[102] Sun X L, Li Z J, Cai Y, Wei Z L, Fang Y J, Ren G X, Huang Y R. Electrochim. Acta, 2011, 56: 1117-1122
[103] Wei Y, Kong L T, Yang R, Wang L, Liu J H, Huang X J. Chem. Commun., 2011, 5340-5342
[104] Wei Y, Yang R, Li X Z, Wang L, Huang X J. Analyst, 2011, 136: 3997-4002
[105] Wei Y, Kong L T, Yang R, Wang L, Liu J H, Huang X J. Langmuir, 2011, 27: 10295-10301
[1] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[2] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[3] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[4] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[5] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[6] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[7] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[8] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[9] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[10] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[11] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[12] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.
[13] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.
[14] He Chen, Shuaiqi Zhang, Zhixue Zhao, Meng Liu, Qingrui Zhang. Application of Dopamine Functional Materials in Water Pollution Control [J]. Progress in Chemistry, 2019, 31(4): 571-579.
[15] Yang Shen, Jiwen Hu, Tingting Liu, Hongwen Gao, Zhangjun Hu. Colorimetric and Fluorogenic Chemosensors for Mercury Ion Based on Nanomaterials [J]. Progress in Chemistry, 2019, 31(4): 536-549.