中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (04): 598-605 Previous Articles   Next Articles

• Review •

Indication of Electrochemical Measurements of Magnesium Alloys in vitro for Their Degradation Behavior in vivo

Wang Jiali1, Tang Jian1, Zhang Peng1, Wang Jue1, Li Yangde2, Qin Ling1   

  1. 1. Centre for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
    2. DongGuan EONETC Co., Ltd, Dongguan 523000, China
  • Received: Revised: Online: Published:
PDF ( 938 ) Cited
Export

EndNote

Ris

BibTeX

As a novel orthopaedic implants in biomedical fields, biodegradable magnesium and its alloys have shown great potential and advantages due to their excellent biocompatibility and mechanical properties. The key factor to limit their further industrialization in the medical field is the rapid degradation behavior, which has become the focus of many researchers. In this paper, the research of corrosion resistance of magnesium-based alloys was summarized based on electrochemical measurements in vitro, and the effects of simulated corrosion system in vitro on corrosion behavior of magnesium and its alloys were also analyzed. Moreover, feasibility and limitation of the electrochemical methods as the fast and efficient indication of degradation behavior of magnesium alloys in vivo is evaluated. Finally, possible means and perspectives for more logic indication of degradation behavior of magnesium alloys in vivo are also proposed.
Contents
1 Introduction
2 Electrochemical measurements in vitro
2.1 Electrochemical corrosion mechanisms of magnesium
2.2 Evaluation of corrosion resistance using electrochemical measurements
2.3 Feasibility of electrochemical results for indication of corrosion behavior of magnesium and its alloys in vivo
3 Outlook

CLC Number: 

[1] Evans F G. Anat. Rec., 1976, 185: 1-12
[2] Staiger M P, Pietak A M, Huadmai J, Dias G. Biomaterials, 2006, 27: 1728-1734
[3] Han Y, Feng A L. J. Alloys Compd., 2010, 504: 585-593
[4] Witte F, Hort N, Vogt C, Cohen S, Kainer K U, Willumeit R, Feyerabend F. Curr. Opin. Solid State Mater. Sci., 2008, 12: 63-72
[5] Lambotte A. Bull. Mém. Soc. Nat. Chir., 1932, 28: 1325-1334
[6] Sealy M P, Guo Y B. J. Mech. Behav. Biomed., 2010, 3: 488-496
[7] Lim C S, Yong J, Toh K M. J. Mech. Med. Biol., 2007, 7: 89-100
[8] Birbilis N, Kirkland N T, Lespagnol J, Staiger M P. Corros. Sci., 2010, 52: 287-291
[9] Guan S K, Wang J, Wang L G, Zhu S J, Ren C X, Hou S S. J. Mater. Sci-Mater. Med., 2010, 21: 2001-2008
[10] Li Y C, Hodgson P D, Wen C E. J. Mater. Sci., 2011, 46: 365-371
[11] Zheng Y F, Gu X N, Zhou W R, Cheng Y, Wei S C, Zhong S P, Xi T F, Chen L J. Acta Biomater., 2010, 6: 4605-4613
[12] Zhou J, Huan Z G, Leeflang M A, Fratila-Apachitei L E, Duszczyk J. J. Mater. Sci-Mater. Med., 2010, 21: 2623-2635
[13] Liu B, Zheng Y F. Acta Biomater., 2011, 7: 1407-1420
[14] Mitchell T, Diplas S, Tsakiropoulos P. Philos. Mag., 2005, 85: 2733-2756
[15] Guan S K, Gao J H, Chen J, Wang L G, Zhu S J, Hu J H, Ren Z W. Appl. Surf. Sci., 2011, 257: 2231-2237
[16] Virtanen S, Turhan M C, Lynch R, Killian M S. Electrochim. Acta, 2009, 55: 250-257
[17] Zheng Y F, Gu X N, Zheng W, Cheng Y. Acta Biomater., 2009, 5: 2790-2799
[18] Xu X H, Lu P, Cao L, Liu Y, Wu X F. J. Biomed. Mater. Res. B, 2011, 96B: 101-109
[19] Chu P K, Liu C G, Xin Y C, Tian X B, Zhao J. J. Vac. Sci. Technol. A, 2007, 25: 334-339
[20] Cheng F T, Ng W F, Wong M H. Mater. Chem. Phys., 2010, 119: 384-388
[21] Fan J M, Li Q, Kang W, Zhang S Y, Chen B. Mater. Corros., 2009, 60: 438-443
[22] Cheung K M C, Wong H M, Yeung K W K, Lam K O, Tam V, Chu P K, Luk K D K. Biomaterials, 2010, 31: 2084-2096
[23] Banerjee P C, Raman R K S, Durandet Y, McAdam G. Corros. Sci., 2011, 53: 1505-1514
[24] Witte F, Fischer J, Nellesen J, Crostack H A, Kaese V, Pisch A, Beckmann F, Windhagen H. Biomaterials, 2006, 27: 1013-1018
[25] Zeng R C, Dietzel W F, Witte F, Hort N, Blawert C. Adv. Biomat., 2008, 108: B3-B14
[26] Song G, Atrens A. Adv. Eng. Mater., 2007, 9: 177-183
[27] Rosalbino F, De Negri S, Saccone A, Angelini E, Delfino S. J. Mater. Sci-Mater. Med., 2010, 21: 1091-1098
[28] Jamesh M, Kumar S, Narayanan T S N S. Corros. Sci., 2011, 53: 645-654
[29] Ghoneim A A, Fekry A M, Ameer M A. Electrochim. Acta, 2010, 55: 6028-6035
[30] Ballerini G, Bardi U, Bignucolo R, Ceraolo G. Corros. Sci., 2005, 47: 2173-2184
[31] Song G L, Song S Z. Adv. Eng. Mater., 2007, 9: 298-302
[32] Li M H, Chen Q A, Zhang W J, Hu W Y, Su Y. J. Mater. Sci., 2011, 46: 2365-2369
[33] Rack H J, Qazi J I. Mat. Sci. Eng. C-Bio. S., 2006, 26: 1269-1277
[34] Wong H M, Yeung K W K, Lam K O, Tam V, Chu P K, Luk K D K, Cheung K M C. Biomaterials, 2010, 31: 2084-2096
[35] Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. Biomaterials, 2009, 30: 484-498
[36] Mueller W D, Nascimento M L, Mele M F L D. Acta Biomater., 2010, 6: 1749-1755
[37] Quach N C, Uggowitzer P J, Schmutz P. C. R. Chim., 2008, 11: 1043-1054
[38] Song Y W, Shan D Y, Chen R S, Zhang F, Han E H. Mat. Sci. Eng. C-Bio. S., 2009, 29: 1039-1045
[39] Wang Y S, Lim C S, Lim C V, Yong M S, Teo E K, Moh L N. Mat. Sci. Eng. C-Bio. S., 2011, 31: 579-587
[40] Mueller W D, Mele M F L D, Nascimento M L, Zeddies M. J. Biomed. Mater. Res. A, 2009, 90A: 487-495
[41] Willumeit R, Fischer J, Feyerabend F, Hort N, Bismayer U, Heidrich S, Mihailova B. Acta Biomater., 2011, 7: 2704-2715
[42] Seuss F, Seuss S, Turhan M C, Fabry B, Virtanen S. J. Biomed. Mater. Res. B, 2011, 99B: 276-281
[43] Tie D, Feyerabend F, Hort N, Willumeit R, Hoeche D. Adv. Biomat., 2010, 12: B699-B704
[1] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[2] Jianwen Shao, Fuchao Yang, Zhiguang Guo. The Application of Biomimetic Superoleophobic Materials under Harsh Operating Conditions [J]. Progress in Chemistry, 2018, 30(12): 2003-2011.
[3] Changlu Zhou, Zhong Xin*. Fabrication, Properties and Applications of Functional Surface Based on Polybenzoxazine [J]. Progress in Chemistry, 2018, 30(1): 112-123.
[4] Rui Ding, Feng Zhao. Intimate Coupling of Photocatalysis and Biodegradation to Synchronously Degrade Pollutants [J]. Progress in Chemistry, 2017, 29(9): 1154-1158.
[5] Hu Chuanbo, Li Ying, Kong Yazhou, Ding Yushi. Anticorrosion Properties of Modified Polyanilines and Its Derivatives Coatings [J]. Progress in Chemistry, 2016, 28(8): 1238-1250.
[6] Yin Lina, Wang Bin, Ma Ruixue, Yuan Honglin, Yu Gang. Enantioselective Environmental Behavior and Effect of Chiral PPCPs [J]. Progress in Chemistry, 2016, 28(5): 744-753.
[7] Gu Lin, Ding Jiheng, Yu Haibin. Research in Graphene-Based Anticorrosion Coatings [J]. Progress in Chemistry, 2016, 28(5): 737-743.
[8] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[9] Lu Lin, Li Xiaogang, Gao Jin. Localized Electrochemical Study on the Interface Corrosion Between Organic Coating/Metal Substrate [J]. Progress in Chemistry, 2011, 23(8): 1618-1626.
[10] Luo Lizhu, Lai Xinchun, Wang Xiaolin. Progress on Uranium Surface Science [J]. Progress in Chemistry, 2011, 23(7): 1322-1328.
[11] Bai Wei Chen Dongliang Li Qing Zhang Zhiping Xiong Chengdong. The Research of Modified Poly(para-dixoane) [J]. Progress in Chemistry, 2009, 21(12): 2696-2703.
[12] Tian Rujin. Metal Bipolar Plate for PEMFC and Its Surface Modification [J]. Progress in Chemistry, 2009, 21(0708): 1687-1692.
[13] . Microbial Ecology in Environmental Purification [J]. Progress in Chemistry, 2009, 21(0203): 566-570.
[14] . Microbial Degradation of Nitroaromatic Compounds [J]. Progress in Chemistry, 2009, 21(0203): 534-539.
[15] Kong Desheng1,2,Wan Lijun1**,Chen Shenhao2. Application and Research Progress of Electrochemical STM in Corrosion Science [J]. Progress in Chemistry, 2004, 16(02): 204-.