中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (04): 589-597 Previous Articles   Next Articles

• Review •

Cytochrome b5-Protein Interactions

Lin Yingwu   

  1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
  • Received: Revised: Online: Published:
PDF ( 824 ) Cited
Export

EndNote

Ris

BibTeX

Protein-protein interactions play crucial roles in biological processes, especially for heme proteins. Cytochrome b5 (Cyt b5) is a typical heme protein, which functions in vivo through various protein-protein interactions. As reviewed herein, the currently revealed interactions associated with Cyt b5 include Cyt b5-Cyt b5 reductase, Cyt b5-Cyt P450, Cyt b5-Cyt c, Cyt b5-myoglobin or hemoglobin, Cyt b5-fusion proteins (glutathione S-transferase, GST, and green fluorescence protein, GFP), and Cyt b5-tansporters (sucrose transporter, SUT1, and sorbital transporter, SOT6), etc. The fact that a single protein can interact with various proteins makes us realize the biological importance of some particular proteins. On the other hand, the study of a single protein interacting with various proteins will further our understanding of protein structure-function relationship, as well as guide rational design of novel proteins for ultimate applications.
Contents
1 Introduction
2 Cytochrome b5
2.1 Structure
2.2 Function
3 Cytochrome b5-protein interactions
3.1 Cytochrome b5-cytochrome b5 reductase
3.2 Cytochrome b5-cytochrome P450
3.3 Cytochrome b5-cytochrome c
3.4 Cytochrome b5-myoglobin or hemoglobin
3.5 Cytochrome b5-fusion protein
3.6 Cytochrome b5-transporter
4 Conclusions and outlook

CLC Number: 

[1] Golemis E. Protein-Protein Interactions. 北京: 中国农业出版社(Beijing: China Agriculture Press), 2004
[2] Garner A L, Janda K D. Curr. Top. Med. Chem., 2011, 11: 258-280
[3] 林英武(Lin Y W), 黄仲贤(Huang Z X). 化学进展(Progress in Chemistry), 2006, 18(6): 794-800
[4] 林英武(Lin Y W), 黄仲贤(Huang Z X). 世界科技研究与发展(World Science-Technology R&D), 2006, 28(1): 8-13
[5] 林英武(Lin Y W). 化学进展(Progress in Chemistry), 2010, 22(6): 1203-1211
[6] Lu Y, Berry S M, Pfister T D. Chem. Rev., 2001, 101: 3047-3080
[7] Stroebel D, Choquet Y, Popot J L, Picot D. Nature, 2003, 426: 413-418
[8] Kurisu G, Zhang H, Smith J L, Cramer W A. Science, 2003, 302: 1009-1014
[9] Kokhan O, Wraight C A, Tajkhorshid E. Biophys. J., 2010, 99: 2647-2656
[10] Cooley J W. Biochim. Biophys. Acta, 2010, 1797: 1842-1848
[11] Moreira I S, Fernandes P A, Ramos M J. Proteins, 2007, 68: 803-812
[12] Vergeres G, Waskell L. Biochimie, 1995, 77: 604-620
[13] Durley R C, Mathews F S. Acta Crystallogr. D, 1996, 52: 65-76
[14] Wu J, Gang J H, Xia Z X, Wang Y H, Wang W H, Xue L L, Xie Y, Huang Z X. Proteins, 2000, 40: 249-257
[15] Falzone C J, Mayer M R, Whiteman E L, Moore C D, Lecomete J T. Biochemistry, 1996, 35: 6519-6526
[16] Chudaev M V, Gilep A A, Usanov S A. Biochemistry(Mosc), 2001, 66: 667-681
[17] Lin Y W, Wang Z H, Ni F Y, Huang Z X. Protein J., 2008, 27: 197-203
[18] Lin Y W, Nie C M, Liao L F. J. Mol. Struct. (Theochem), 2009, 910: 154-162
[19] Lin Y W, Ying T L, Liao L F. J. Mol. Model., 2011, 17: 971-978
[20] Wang W H, Lu J X, Yao P, Xie Y, Huang Z X. Protein Eng., 2003, 16: 1047-1054
[21] Lin Y W, Ying T L, Liao L F. Chin. Chem. Lett., 2009, 20: 631-634
[22] Barker P D, Ferrer J C, Mylrajan M, Loehr T M, Feng R, Konishi Y, Funk W D, MacGillivray R T, Mauk A G. Proc. Natl. Acad. Sci. USA, 1993, 90: 6542-6546
[23] Lin Y W, Wang W H, Zhang Q, Lu H J, Yang P Y, Xie Y, Huang Z X, Wu H M. Chembiochem, 2005, 6: 1356-1359
[24] Lin Y W, Wu Y M, Liao L F, Nie C M. J. Mol. Model., 2011, doi: 10.1007/s00894-011-1189-y
[25] Schenkman J B, Jansson I. Pharmacol. Therapeut., 2003, 97: 139-152
[26] Davydov D R. Trends Biochem. Sci., 2001, 26: 155-160
[27] Sligar S G, Egeberg K D, Sage J T, Morikis D, Champion P M. J. Am. Chem. Soc., 1987, 109: 7896-7897
[28] Rodríguez J C, Rivera M. Biochemistry, 1998, 37: 13082-13090
[29] Avila L, Huang H W, Rodríguez J C, Moenne-Loccoz P, Rivera M. J. Am. Chem. Soc., 2000, 122: 7618-7619
[30] Avila L, Huang H W, Damaso C O, Lu S, Moenne-Loccoz P, Rivera M. J. Am. Chem. Soc., 2003, 125: 4103-4110
[31] Wang W H, Wang Y H, Xie Y, Huang Z X. Chem. Lett., 2002, 674-675
[32] Ihara M, Shintaku M, Takahashi S, Ishimori K, Morishima I. J. Am. Chem. Soc., 2000, 122: 11535-11536
[33] Yanagi T. Biochemistry, 1977, 16: 2725-2730
[34] Bewley M C, Marohnic C C, Barber M J. Biochemistry, 2001, 40: 13574-13582
[35] Strittmatter P, Hackett C S, Korza G, Ozols J. J. Biol. Chem., 1990, 265: 21709-21713
[36] Kawano M, Shirabe K, Nagai T, Takeshita M. Biochem. Biophys. Res. Commun., 1998, 245: 666-669
[37] Shirabe K, Nagai T, Yubisui T, Takeshita M. Biochim. Biophys. Acta, 1998, 1384: 16-32
[38] Bando S, Takano T, Yubisui T, Shirabe K, Takeshita M, Nakagawa A. Acta Cryst. D, 2004, 60: 1929-1934
[39] Asada T, Nagase S, Nishimoto K, Koseki S. J. Mol. Liquid., 2009, 147: 139-144
[40] Im S C, Waskell L. Arch. Biochem. Biophys., 2011, 507: 144-153
[41] Clarke T A, Im S C, Bidwai A, Waskell L. J. Biol. Chem., 2004, 279: 36809-36818
[42] Zhang H, Im S C, Waskell L. J. Biol. Chem., 2007, 282: 29766-29776
[43] Kaspera R, Naraharisetti S B, Evangelista E A, Marciante K D, Psaty B M, Totah R A. Biochem. Pharmacol., 2011, 82: 681-691
[44] Locuson C W, Wienkers L C, Jones J P, Tracy T S. Drug Metab. Dispos., 2007, 35: 1174-1181
[45] Gao Q, Doneanu C E, Shaffer S A, Adman E T, Goodlett D R, Nelson S D. J. Biol. Chem., 2006, 281: 20404-20417
[46] Kumar S, Davydov D R, Halpert J R. Drug Metab. Dispos., 2005, 33: 1131-1136
[47] Guzov V M, Houston H L, Murataliev M B, Walker F A, Feyereisen R. J. Biol. Chem., 1996, 271: 26637-26645
[48] Noble M A, Girvan H M, Smith S J, Murataliev M, Guzov V M, Feyereisen R, Munro A W. Drug Metab. Rev., 2007, 39: 599-617
[49] Vergères G, Waskell L. J. Biol. Chem., 1992, 267: 12583-12591
[50] Bushnell G W, Louie G V, Brayer G D. J. Mol. Biol., 1990, 214: 585-595
[51] Salemme F R. J. Mol. Biol., 1976, 102: 563-568
[52] Mauk M R, Mauk A G, Weber P C, Matthew J B. Biochemistry, 1986, 25: 7085-7091
[53] Rodgers K K, Pochapsky T C, Sligar S G. Science, 1988, 240: 1657-1659
[54] Burch A M, Rigby S E J, Funk W D, MacGillivray R T, Mauk M R, Mauk A G, More G R. Science, 1990, 247: 831-833
[55] Eltis L D, Herbert R G, Barker P D, Mauk A G, Northrup S H. Biochemistry, 1991, 30: 3663-3674
[56] Northrup S H, Thomasson K A, Miller C M, Barker P D, Eltis L D, Guillemette J G, Inglis S C, Mauk A G. Biochemistry, 1993, 32: 6613-6623
[57] Mauk A G, Mauk M R, Moore G R, Northrup S H. J. Bioenerg. Biomemb., 1995, 27: 311-330
[58] Durham B, Fairris J L, McLean M, Millett F, Scott J R, Sligar S G, Willie A. J. Bioenerg. Biomemb., 1995, 27: 331-340
[59] Sun Y L, Wang Y H, Yan M M, Sun B Y, Xie Y, Huang Z X, Jiang S K, Wu H M. J. Mol. Biol., 1999, 285: 347-359
[60] Qian C, Yao Y, Ye K, Wang J, Tang W, Wang W, Lu J, Xie Y, Huang Z. Protein Sci., 2001, 10: 2451-2459
[61] Wu Y, Wang Y, Qian C, Lu J, Li E, Wang W, Lu J, Xie Y, Wang J, Zhu D, Huang X, Tang W. Eur. J. Biochem., 2001, 268: 1620-1630
[62] Wu J, Wang Y H, Gan J H, Wang W H, Sun B Y, Huang Z X, Xia Z X. Chin. J. Chem., 2002, 20: 1125-1234
[63] Ren Y, Wang W H, Wang Y H, Case M, Qian W, McLendon G, Huang Z X. Biochemistry, 2004, 43: 3527-3536
[64] Banci L, Bertini I, Felli I C, Krippahi L, Kubicek K, Moura J J, Rosato A. J. Biol. Inorg. Chem., 2003, 8: 777-786
[65] Ying T, Wang Z H, Lin Y W, Xie J, Tan X, Huang Z X. Chem. Commun., 2009, 30: 4512-4514
[66] Lin Y W, Liao L F. Comput. Theo. Chem., 2011, 976: 130-134
[67] Wan D, Liao L F, Zhao M M, Wu M L, Wu Y M, Lin Y W. J. Mol. Model., 2012, 18: 1009-1013
[68] Periyakaruppan A, Sarkar S, Ravichandran P, Sadanandan B, Sharma C S, Ramesh V, Hall J C, Thomas R. Arch. Toxicol., 2009, 83: 595-600
[69] Mauk M R, Mauk A G. Biochemistry, 1982, 21: 4730-4734
[70] Livingston D J, McLachlan S J, La Mar G N, Brown W D. J. Biol. Chem., 1985, 260: 15699-15707
[71] Stayton P S, Fisher M T, Sligar S G. J. Biol. Chem., 1988, 263: 13544-13548
[72] Nocek J M, Sishta B P, Cameron J C, Mauk A G, Hoffman B M. J. Am. Chem. Soc., 1997, 119: 2146-2155
[73] Naito N, Huang H, Sturgess W, Neck J M, Hoffman B M. J. Am. Chem. Soc., 1998, 120: 11256-11262
[74] Liang Z X, Jiang M, Ning Q, Hoffman B M. J. Biol. Inorg. Chem., 2002, 7: 580-588
[75] Liang Z X, Nocek J M, Huang K, Hayes T R, Kurnikov I V, Beratan D N, Hoffman B M. J. Am. Chem. Soc., 2002, 124: 6849-6859
[76] Wheeler K E, Nocek J M, Cull D A, Yatsunyak L, Rosenzweig A C, Hoffman B M. J. Am. Chem. Soc., 2007, 129: 3906-3917
[77] Xiong P, Nocek J M, Griffin A K, Wang J, Hoffman B M. J. Am. Chem. Soc., 2009, 131: 6938-6939
[78] Nocek J M, Knutson A K, Xiong P, Co N P, Hoffman B M. J. Am. Chem. Soc., 2010, 132: 6165-6175
[79] Xiong P, Nocek J M, Vura-Weis J, Lockard J V, Wasielewski M R, Hoffman B M. Science, 2010, 330: 1075-1078
[80] Hultquist D E, Passon P G. Nat. New Biol., 1971, 229: 252-254
[81] Johnson K S, Harrison G B L, Lightowlers M W, O’Hoy K L, Gougle W G, Dempster R P, Lawrence S B, Vinton J G, Heath D D, Richard M D. Nature, 1989, 338: 585-587
[82] Lin Y W, Zhao D X, Wang Z H, Yu W H, Huang Z X. Protein Expr. Purif., 2006, 45: 352-358
[83] Yantsevich A V, Harnostai I N, Lukashevich O P. Biochemistry(Mosc), 2007, 72: 77-83
[84] Yantsevich A V, Gilep A A, Usanov S A. Biochemistry(Mosc), 2009, 74: 518-527
[85] Yantsevich A V, Gilep A A, Usanov S A. Biochemistry(Mosc), 2009, 74: 862-873
[86] Yantsevich A V, Gilep A A, Usanov S A. Biochemistry(Mosc), 2008, 73: 1096-1107
[87] Fan R C, Peng C C, Xu Y H, Wang X F, Li Y, Shang Y, Du S Y, Zhao R, Zhang X Y, Zhang L Y, Zhang D P. Plant Physiol., 2009, 150: 1180-1901
[88] Cao Z, Maurousset L, Lemoine R, Yoo S D, van Nocker S, Loescher W. Plant Physiol., 2003, 131: 1566-1575
[89] Lu Y, Yeung N, Sieracki N, Marshall N M. Nature, 2009, 460: 855-862
[90] Lin Y W. Proteins, 2011, 79: 679-684
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[4] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[5] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[6] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[7] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[8] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[9] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[10] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[11] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[12] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[13] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[14] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[15] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
Viewed
Full text


Abstract

Cytochrome b5-Protein Interactions