中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (04): 577-588 Previous Articles   Next Articles

• Review •

New Strategies for Protein Functionalization: Inserting Unnatural Amino Acids into Proteins

Zhang Chunqiu, Luo Quan, Liu Junqiu, Shen Jiacong   

  1. State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
  • Received: Revised: Online: Published:
PDF ( 1720 ) Cited
Export

EndNote

Ris

BibTeX

Although 20 natural amino acids served as the building blocks of proteins contain several functional groups including carboxylic acids, amides, thiols, thiol ethers, alcohols, basic amines, and alkyl and aryl groups, they are still unable to carry out all of the natural functions. In order to improve the precision and diversity of protein to perform the biological processes, organisms have provided a variety of posttranslational modifications including phosphorylation, methylation, acetylation, and hydroxylation, even evolved novel translational machinery to incorporate either selenocysteine or pyrrolysine. Inspired by biological system, many biological or chemical methods have been developed to alter or insert new building blocks into protein, which enable protein to perform relevant functions or have some special properties, even create a new kind of enzyme. Here, we give a brief overview of the strategies for protein modification and the latest progress in this field.
Contents
1 Introduction
2 Chemical approaches
2.1 Chemical modification of proteins
2.2 Chemical synthesis
2.3 Semisynthesis
3 Biosynthetic approaches in vitro
4 Biosynthetic approaches in vivo
4.1 Incorporating unnatural amino acids into proteins using auxotrophic bacterial strains
4.2 Expanding genetic code
5 Functionalization and applications
5.1 'Click’ chemistry
5.2 Alkyne and azide functionalization
5.3 Keto and aldehyde functionalization
5.4 Alkene functionalization
5.5 Other functional unnatural amino acids
6 Conclusion and prospects

CLC Number: 

[1] Liu J Q, Jiang M S, Luo G M, Yan G L, Shen J C. Biotechnol. Lett., 1998, 20: 693-696
[2] Levine H L, Nakagawa Y, Kaiser E T. Biochem. Biophys. Res. Commun., 1977, 76: 64-70
[3] Levine H L, Kaiser E T. J. Am. Chem. Soc., 1978, 100: 7670-7677
[4] Kaiser E T, Lawrence D S. Science, 1984, 226: 505-511
[5] Chen Y, Ebright Y W, Ebright R H. Science, 1994, 265: 90-92
[6] Wang Q, Chan T R, Hilgraf R, Fokin V V, Sharpless K B, Finn M G. J. Am. Chem. Soc., 2003, 125: 3192-3193
[7] Geoghegan K F, Stroh J G. Bioconjugate Chem., 1992, 3: 138-146
[8] Merrifield R B. J. Am. Chem. Soc., 1963, 85: 2149-2154
[9] Kent S B. Annu. Rev. Biochem., 1988, 57: 957-989
[10] Roy R S, Imperiali B. Protein Eng., 1997, 10: 691-698
[11] Hamachi I, Eboshi R, Watanabe J I, Shinkai S. J. Am. Chem. Soc., 2000, 122: 4530-4531
[12] Nestor J J, Ho T L, Simpson R A, Horner B L, Jones G H, McRae G I, Vickery B H. J. Med. Chem., 1982, 25: 795-801
[13] Nestor J J, Tahilramani R, Ho T L, McRae G I, Vickery B H. J. Med. Chem., 1988, 31: 65-72
[14] Liu K L, He B L, Xiao S B, Xia Q M, Fang X, Wang Z Y. Int. J. Pept. Protein Res., 1990, 35: 157-160
[15] Bilgicer B, Fichera A, Kumar K. J. Am. Chem. Soc., 2001, 123: 4393-4399
[16] Schnolzer M, Kent S B. Science, 1992, 256: 221-225
[17] Rose K. J. Am. Chem. Soc., 1994, 116: 30-33
[18] Englebretsen D R, Garnham B G, Bergman D A, Alewood P F. Tetrahedron Lett., 1995, 36: 8871-8874
[19] Baca M, Muir T W, Schnoelzer M, Kent S B H. J. Am. Chem. Soc., 1995, 117: 1881-1887
[20] Liu C F, Tam J P. J. Am. Chem. Soc., 1994, 116: 4149-4153
[21] Liu C F, Tam J P. Proc. Natl. Acad. Sci. U. S. A., 1994, 91: 6584-6588
[22] Schumacher T N, Mayr L M, Minor D L, Milhollen M A, Burgess M W, Kim P S. Science, 1996, 271: 1854-1857
[23] Eckert D M, Malashkevich V N, Hong L H, Carr P A, Kim P S. Cell, 1999, 99: 103-115
[24] Schnolzer M, Kent S B H. Science, 1992, 256: 221-225
[25] Han S, Viola R E. Protein Pept. Lett., 2004, 11: 107-114
[26] Tam J P, Xu J, Eom K D. Pept. Sci., 2001, 60 : 194-205
[27] Wallace C J, Clark-Lewis I. J. Biol. Chem., 1992, 267: 3852-3861
[28] Wallace C J. FASEB J., 1993, 7: 505-515
[29] Wuttke D S, Gray H B, Fisher S L, Imperiali B. J. Am. Chem. Soc., 1993, 115: 8455-8456
[30] Wong C H, Wang K T. Experientia, 1991, 47: 1123-1129
[31] Bongers J, Lambros T, Liu W, Ahmad M, Campbell R M, Felix A M, Heimer E P. J. Med. Chem., 1992, 35: 3934-3941
[32] Bongers J, Liu W, Lambros T, Breddam K, Campbell R M, Felix A M, Heimer E P. Int. J. Pept. Protein Res., 1994, 44: 123-129
[33] Nakatsuka T, Sasaki T, Kaiser E T. J. Am. Chem. Soc., 1987, 109: 3808-3810
[34] Abrahmsen L, Tom J, Burnier J, Butcher K A, Kossiakoff A, Wells J A. Biochemistry, 1991, 30: 4151-4159
[35] Chapeville F, Lipmann F, von Ehrenstein G, Weisblum B, Ray W J, Benzer S. Proc. Natl. Acad. Sci. USA, 1962, 48: 1086-1092
[36] Heckler T G, Zama Y, Naka T, Hecht S M. J. Biol. Chem., 1983, 258: 4492-4495
[37] Roesser J R, Chorghade M S, Hecht S M. Biochemistry, 1986, 25: 6361-6365
[38] Heckler T G, Roesser J R, Xu C, Chang P I, Hecht S M. Biochemistry, 1988, 27: 7254-7262
[39] Noren C J, Anthony-Cahill S J, Griffith M C, Schultz P G. Science, 1989, 244: 182-188
[40] Miller J H, Ganem D, Lu P, Schmitz A. J. Mol. Biol., 1977, 109: 275-301
[41] Bossi L, Roth J R. Nature, 1980, 286: 123-127
[42] Kwok Y, Wong J T. Can. J. Biochem., 1980, 58: 213-218
[43] Bruce A G, Atkins J F, Wills N, Uhlenbeck O, Gesteland R F. Proc. Natl. Acad. Sci. USA, 1982, 79: 7127-7131
[44] Miller A, Albertini A. J. Mol. Biol., 1983, 164: 59-71
[45] Ayer D, Yarus M. Science, 1986, 231: 393-395
[46] Robertson S A, Ellman J A, Schultz P G. J. Am. Chem. Soc., 1991, 113: 2722-2729
[47] Kowal A K, Oliver J S. Nucleic Acids Res., 1997, 25: 4685-4689
[48] Forster A C, Tan Z, Nalam M N, Lin H, Qu H, Cornish V W, Blacklow S C. Proc. Natl. Acad. Sci. USA, 2003, 100: 6353-6357
[49] Sisido M, Hohsaka T. Appl. Microbiol. Biotechnol., 2001, 57: 274-281
[50] Hohsaka T, Sisido M. Nucleic Acids Symp. Ser., 2000, 44: 99-100
[51] Hohsaka T, Ashizuka Y, Taira H, Murakami H, Sisido M. Biochemistry, 2001, 40: 11060-11064
[52] Hutchison C A Ⅲ, Phillips S, Edgell M H, Gillam S, Jahnke P, Smith M. J. Biol. Chem., 1978, 253: 6551-6560
[53] Dalbadie-McFarland G, Cohen L W, Riggs A D, Morin C, Itakura K, Richards J H. Proc. Natl. Acad. Sci. USA, 1982, 79: 6409-6413
[54] Sigal I S, Harwood B G, Arentzen R. Proc. Natl. Acad. Sci. USA, 1982, 79: 7157-7160
[55] Winter G, Fersht A R, Wilkinson A J, Zoller M, Smith M. Nature, 1982, 299: 756-758
[56] Villafranca J E, Howell E E, Voet D H, Strobel M S, Ogden R C, Abelson J N, Kraut J. Science, 1983, 222: 782-788
[57] Craik C S, Roczniak S, Largman C, Rutter W J. Science, 1987, 237: 909-913
[58] Wells J A, Estell D A. Trends Biochem. Sci., 1988, 13: 291-297
[59] Jones P T, Dear P H, Foote J, Neuberger M S, Winter G. Nature, 1986, 321: 522-525
[60] Nardelli J, Gibson T J, Vesque C, Charnay P. Nature, 1991, 349: 175-178
[61] Desjarlais J R, Berg J M. Proteins Struct. Funct. Genet., 1992, 12: 101-104
[62] Nardelli J, Gibson T, Charnay P. Nucleic Acids Res., 1992, 20 : 4137-4144
[63] Choo Y, Klug A. Proc. Natl. Acad. Sci. USA, 1994, 91: 11163-11167
[64] Isalan M, Choo Y, Klug A. Proc. Natl. Acad. Sci. USA, 1997, 94 : 5617-5621
[65] Isalan M, Klug A, Choo Y. Biochemistry, 1998, 37: 12026-12033
[66] Choo Y, Isalan M. Curr. Opin. Struct. Biol., 2000, 10: 411-416
[67] Wolfe S A, Nekludova L, Pabo C O. Annu. Rev. Biophys. Biomol. Struct., 2000, 29: 183-212
[68] Mitchell H K, Niemann C. J. Am. Chem. Soc., 1947, 69: 1232-1232
[69] Simpson M V, Farber E, Tarver H. J. Biol. Chem., 1950, 182: 81-90
[70] Richmond M H. Bacteriol. Rev., 1962, 26: 398-420
[71] Levine M, Tarver H. J. Biol. Chem., 1951, 192: 835-850
[72] Gross D, Tarver H. J. Biol. Chem., 1955, 217: 169-182
[73] Wang L, Schultz P G. Angew. Chem. Int. Ed., 2005, 44: 34-66
[74] Richmond M H. Biochem. J., 1959, 73: 261-264
[75] Cowie D B, Cohen G N, Bolton E T, de Robichon-Szulmajster H. Biochim. Biophys. Acta, 1959, 34: 39-46
[76] Rennert O M, Anker H S. Biochemistry, 1961, 13: 471-476
[77] Cohen G N, Cowie D B. C. R. Hebd. Seances Acad. Sci., 1957, 244: 680-683
[78] Cowie D B, Cohen G N. Biochim. Biophys. Acta, 1957, 26: 252-261
[79] Li J, Liu X M, Liu J Q. Chinese Science Bulletin, 2008, 53: 2454-2461
[80] Ge Y, Qi Z H, Liu J Q. Int. J. Biochem. Cell. Biol., 2009, 41: 900-906
[81] Yu H J, Liu J Q. Biochemical and Biophysical Research Communications, 2007, 358: 873-878
[82] Liu X M, Liu J Q. Angew. Chem. Int. Ed., 2009, 48: 2020-2023
[83] Ibba M, Kast P, Hennecke H. Biochemistry, 1994, 33: 7107-7112
[84] Ibba M, Hennecke H. FEBS Lett., 1995, 364: 272-275
[85] Sharma N, Furter R, Kast P, Tirrell D A. FEBS Lett., 2000, 467: 37-40
[86] Kirshenbaum K, Carrico S I, Tirrell A D. ChemBioChem, 2002, 3: 235-237
[87] Doring V, Mootz H D, Nangle L A, Hendrickson T L, de Crecy-Lagard V, Schimmel P, Marliere P. Science, 2001, 292: 501-504
[88] Liu D R, Magliery T J, Schultz P G. Chem. Biol., 1997, 4: 685-691
[89] Liu D R, Magliery T J, Pasternak M, Schultz P G. Proc. Natl. Acad. Sci. USA, 1997, 94: 10092-10097
[90] Wang L, Magliery T J, Liu D R, Schultz P G. J. Am. Chem. Soc., 2000, 122: 5010-5011
[91] Wang L, Schultz P G. Chem. Biol., 2001, 8: 883-890
[92] Wang L, Brock A, Herberich B, Schultz P G. Science, 2001, 292: 498-500
[93] Ai H W, Shen W J, Brustad E, Schultz P G. Angew. Chem. Int. Ed., 2009, 48: 1-4
[94] Neumann H, Slusarczyk A L, Chin J W. J. Am. Chem. Soc., 2010, 132: 2142-2144
[95] Deiters A, Cropp T A, Mukherji M, Chin J W, Anderson J C, Schultz P G. J. Am. Chem. Soc., 2003, 125: 11782-11783
[96] Edwards H, Schimmel P. Mol. Cell. Biol., 1990, 10: 1633-1641
[97] Edwards H, Trezeguet V, Schimmel P. Proc. Natl. Acad. Sci. USA, 1991, 88: 1153-1156
[98] Chin J W, Cropp T A, Anderson J C, Mukherji M, Zhang Z, Schultz P G. Science, 2003, 301: 964-967
[99] Zhang Z, Alfonta L, Tian F, Bursulaya B, Uryu S, King D S, Schultz P G. Proc. Natl. Acad. Sci. USA, 2004, 101: 8882-8887
[100] Lutz J F, Borner H G. Prog. Polym. Sci., 2008, 33: 1-39
[101] Strable E, Prasuhn D E, Udit A K, Brown S, Link A J, Ngo J T, Lander G, Quispe J, Potter C S, Carragher B, Tirrell D A, Finn M G. Bioconjugate Chem., 2008, 19: 866-875
[102] Cazalis C S, Haller C A, Sease-Cargo L, Chaikof E L. Bioconjugate Chem., 2004, 15: 1005-1009
[103] van Kasteren S I, Kramer H B, Gamblin D P, Davis B G. Nat. Protoc., 2007, 2: 3185-3194
[104] van Kasteren S I, Kramer H B, Jensen H H, Campbell S J, Kirkpatrick J, Oldham N J, Anthony D C, Davis B G. Nature, 2007, 446: 1105-1109
[105] Beatty K E, Liu J C, Xie F, Dieterich D C, Schuman E M, Wang Q, Tirrell D A. Angew. Chem. Int. Ed., 2006, 45: 7364-7367
[106] Beatty K E, Xie F, Wang Q, Tirrell D A. J. Am. Chem. Soc., 2005, 127: 14150-14151
[107] Link A J, Tirrell D A. J. Am. Chem. Soc., 2003, 125: 11164-11165
[108] Deiters A, Cropp T A, Mukherji M, Chin J W, Anderson J C, Schultz P G. J. Am. Chem. Soc., 2003, 125: 11782-11783
[109] Deiters A, Schultz P G. Bioorg. Med. Chem. Lett., 2005, 15: 1521-1524
[110] Deiters A, Cropp T A, Summerer D, Mukherji M, Schultz P G. Bioorg. Med. Chem. Lett., 2004, 14: 5743-5745
[111] Iida S, Asakura N, Tabata K, Okura I, Kamachi T. ChemBioChem, 2006, 7: 1853-1855
[112] Bundy B C, Swartz J R. Bioconjugate Chem., 2010, 21: 255-263
[113] Godoy-Alcntar C, Yatsimirsky A K, Lehn J J. Phys. Org. Chem., 2005, 18: 979-985
[114] Geoghegan K F, Stroh J G. Bioconjugate Chem., 1992, 3: 138-146
[115] Shao J, Tam J P. J. Am. Chem. Soc., 1995, 117: 3893-3899
[116] Rose K. J. Am. Chem. Soc., 1994, 116: 30-33
[117] Tam J P, Yu Q, Miao Z. Pept. Sci., 1999, 51: 311-332
[118] Löwik D, Ayres L, Smeenk J, van Hest J. Adv. Polym. Sci., 2006, 202: 19-52
[119] Köhn M, Breinbauer R. Angew. Chem. Int. Ed., 2004, 43: 3106-3116
[120] Gaertner H F, Offord R E. Bioconjugate Chem., 1996, 7: 38-44
[121] Canne L E, Ferre-D’Amare A R, Burley S K, Kent S B H. J. Am. Chem. Soc., 1995, 117: 2998-3007
[122] Zeng H, Xie J, Schultz P G. Bioorg. Med. Chem. Lett., 2006, 16: 5356-5359
[123] Datta D, Wang P, Carrico I S, Mayo S L, Tirrell D A. J. Am. Chem. Soc., 2002, 124: 5652-5653
[124] Wang L, Zhang Z, Brock A, Schultz P G. Proc. Natl. Acad. Sci. USA, 2003, 100: 56-61
[125] Zhang Z, Smith B A C, Wang L, Brock A, Cho C, Schultz P G. Biochemistry, 2003, 42: 6735-6746
[126] Ye S, Koehrer C, Huber T, Kazmi M, Sachdev P, Yan C Y, Bhagat E A, RajBhandary U L, Sakmar T P. J. Biol. Chem., 2008, 283: 1525-1533
[127] Taki M, Tokuda Y, Ohtsuki T, Sisido M. The Society for Biotechnology, Japan., 2006, 102: 511-517
[128] Liu H, Wang L, Brock A, Wong C, Schultz P G. J. Am. Chem. Soc., 2003, 125: 1702-1703
[129] Bar-Or R, Rael L T, Bar-Or D. Rapid Commun. Mass Spectrom., 2008, 22: 711-716
[130] Seebeck F P, Szostak J W. J. Am. Chem. Soc., 2006, 128: 7150-7151
[131] Wang J, Schiller S M, Schultz P G. Angew. Chem. Int. Ed., 2007, 46: 6849-6851
[132] Zhang Z, Wang L, Brock A, Schultz P G. Angew. Chem. Int. Ed., 2002, 41: 2840-2842
[133] Clark T D, Ghadiri M R. J. Am. Chem. Soc., 1995, 117: 12364-12365
[134] Chin J W, Cropp T A, Anderson J C, Mukherji M, Zhang Z, Schultz P G. Science, 2003, 301: 964-967
[135] Chin J W, Santoro S W, Martin A B, King D S, Wang L, Schultz P G. J. Am. Chem. Soc., 2002, 124: 9026-9027
[136] Farrell I S, Toroney R, Hazen J L, Mehl R A, Chin J W. Nat. Methods, 2005, 2: 377-384
[137] Chin J W, Martin A B, King D S, Wang L, Schultz P G. Proc. Natl. Acad. Sci. USA, 2002, 99: 11020-11024
[138] Chin J W, Schultz P G. ChemBioChem, 2002, 3: 1135-1137
[139] Kauer J C, Erickson-Viitanen S, Wolfe H R, DeGrado W F. J. Biol. Chem., 1986, 261: 10695-10700
[140] Schlieker C, Weibezahn J, Patzelt H, Tessarz P, Strub C, Zeth K, Erbse A, Schneider-Mergener J, Chin J W, Schultz P G, Bukau B, Mogk A. Nat. Struct. Mol. Biol., 2004, 11: 607-615
[141] Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, Lee S, Zentgraf H, Weber-Ban E U, Dougan D A, Tsai F T, Mogk A, Bukau B. Cell, 2004, 119: 653-665
[142] Hino N, Okazaki Y, Kobayashi T, Hayashi A, Sakamoto K, Yokoyama S. Nat. Methods, 2005, 2: 201-206
[143] Wu N, Deiters A, Cropp T A, King D, Schultz P G. J. Am. Chem. Soc., 2004, 126: 14306-14307
[144] Deiters A, Groff D, Ryu Y, Xie J, Schultz P G. Angew. Chem. Int. Ed., 2006, 45: 2728-2731
[145] Wang J, Xie J, Schultz P G. J. Am. Chem. Soc., 2006, 128: 8738-8739
[146] Summerer D, Chen S, Wu N, Deiters A, Chin J W, Schultz P G. Proc. Natl. Acad. Sci. USA, 2006, 103: 9785-9789
[147] Tsao M L, Summerer D, Ryu Y, Schultz P G. J. Am. Chem. Soc., 2006, 128: 4572-4573
[148] Deiters A, Geierstanger B H, Schultz P G. ChemBioChem, 2005, 6: 55-58
[149] Suydam I T, Boxer S G. Biochemistry, 2003, 42: 12050-12055
[1] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[2] Yanyan Wang, Limin Chen, Siyang Li, Luhua Lai. How Intrinsically Disordered Proteins Modulate Biomolecular Condensates [J]. Progress in Chemistry, 2022, 34(7): 1610-1618.
[3] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.
[4] Bin Qiao, Hongfei Chen, Hui Zhang, Chenxin Cai. Analysis and Detection of Tumor Exosomes [J]. Progress in Chemistry, 2019, 31(6): 847-857.
[5] Ding Peng, Chen Xian, Li Xiuling, Qing Guangyan, Sun Taolei, Liang Xinmiao. The Separation and Enrichment of Glycoproteins or Glycopeptides Based on Nanoparticles [J]. Progress in Chemistry, 2015, 27(11): 1628-1639.
[6] Cao Ya, Zhu Xiaoli, Zhao Jing, Li Hao, Li Genxi. Electrochemical Analysis of Tumor Marker Proteins [J]. Progress in Chemistry, 2015, 27(1): 1-10.
[7] Lin Yingwu. Dimerization, Oligomerization and Polymerization of Heme Proteins [J]. Progress in Chemistry, 2014, 26(06): 987-995.
[8] Zhong Dagen, Liu Zonghua, Zuo Qinhua, Xue Wei. Interaction of Polymeric Nanomaterials with Plasma Proteins [J]. Progress in Chemistry, 2014, 26(04): 638-646.
[9] Chen Xuwei, Mao Quanxing, Wang Jianhua*. Ionic Liquids in Extraction/Separation of Proteins [J]. Progress in Chemistry, 2013, 25(05): 661-668.
[10] Xu Caihong, Zhao Yaqin, Yang Binsheng*. Mediating Roles of Metal Ions in the Structures and Functions of Metalloproteins [J]. Progress in Chemistry, 2013, 25(04): 520-529.
[11] Cheng Gong, Wang Zhigang, Liu Yanlin, Zhang Jilin*, Sun Dehui, Ni Jiazuan. Phosphoprotein/Phosphopeptide Enrichment and Analysis Based on Nanostructured Materials [J]. Progress in Chemistry, 2013, 25(04): 620-632.
[12] Wang Jinye, Song Chen, Xu Jingkun, Ding Baoquan. Organizing Functional Nanomaterials with DNA Origami [J]. Progress in Chemistry, 2012, (10): 1936-1945.
[13] Zhang Min, Wu Yuqing. Spectroscopic Study on the Pressure-Induced Conformation Change of Protein in Aqueous Solution [J]. Progress in Chemistry, 2011, 23(10): 2003-2011.
[14] He Naipu, He Yufeng, Wang Rongmin, Song Pengfei, Zhou Yun. Protein Polymer Conjugates [J]. Progress in Chemistry, 2010, 22(12): 2388-2396.
[15] . Quantification of Proteins by Use of ICP-MS [J]. Progress in Chemistry, 2010, 22(11): 2199-2206.