中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (04): 568-576 Previous Articles   Next Articles

• Review •

Electrochemical Glucose Biosensors

Shi Wentao1,2, Di Jing1, Ma Zhanfang1   

  1. 1. Department of Chemistry, Capital Normal University, Beijing 100048, China;
    2. Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
PDF ( 2737 ) Cited
Export

EndNote

Ris

BibTeX

As one of the most important researches of electrochemical biosensors, electrochemical glucose biosensors obtained great achievements in the last several decades. The main research is reviewed in this paper, which focused on designing new electrochemical glucose biosensors based on nanotechnology in recent years. It was clarified by the dimensionality of the nanomaterials. Among them, zero-dimensional nanomaterials involving gold nanoparticles, silver nanoparticles, and other metal nanoparticles, one-dimensional nanomaterials involving metal or metal oxide nano wires or tubes by template methods and single wall or multi wall carbon nanotubes, two-dimensional nanomaterials involving graphene and other plate-like metal nanomaterials are discussed. The effects of nanomaterials on the electrochemical glucose biosensors are mainly focused on the biocompatibility, enhancement of sensitivity and selectivity, enzyme immobilization, etc. Additionally, the prospects of future development of electrochemical glucose biosensors is also given.
Contents
1 Introduction
2 Zero-dimension nanomaterials based glucose biosensors
2.1 Gold nanoparticles
2.2 Silver nanoparticles
2.3 Other nanoparticles
3 One-dimension nanomaterials based glucose biosensors
3.1 Nanowires prepared by template methods
3.2 Carbon nanotubes
4 Two-dimension nanomaterials based glucose biosensors
5 Conclusion and outlook

CLC Number: 

[1] Clark L C, Lyons C N Y. Acad. Sci., 1962, 102: 29-45
[2] Willner I, Lapidot N, Riklin A, Kasher R, Zahavy E, Katz E. J. Am. Chem. Soc., 1994, 116: 1428-1441
[3] Valentini F, Palleschi G. Anal. Lett., 2008, 41: 479-520
[4] Crumbliss A L, Perine S C, Stonehuerner J, Tubergen K R, Zhao J G, Henkens R W, O’Daly J P. Biotechnol. Bioeng., 1992, 40: 483-490
[5] Horisberger M. Trends Biochem. Sci., 1983, 8: 395-397
[6] 陈桂芳(Chen G F), 梁志强(Liang Z Q), 李根喜(Li G X). 生物物理学报(Acta Biophysica Sinica), 2010, 8: 711-725
[7] 杨海朋(Yang H P), 陈仕国(Chen S G), 李春辉(Li C H), 陈东成(Chen D C), 戈早川(Ge Z C). 化学进展(Prog. Chem. ), 2009, 21: 210-216
[8] Rajesh, Ahuja T, Kumar D. Sens. Actuat. B, 2009, 136: 275-286
[9] Yabuki S, Mizutani F. Proc. East Asia Conf. Chem. Sens. 2nd, 1995. 270-272
[10] Bharathi S. Anal. Commun., 1998, 35: 29-31
[11] Wang J, Pamidi P V A. Anal. Chem., 1997, 69: 4490-4494
[12] Chen Z J, Ou X M, Tang F Q, Jiang L. Colloids Surf. B, 1996, 7: 173-179
[13] Willner I, Katz E. Angew. Chem. Int. Ed., 2000, 39: 1180-1218
[14] Willner I. Science, 2002, 298: 2407-2408
[15] Xiao Y, Patolsky F, Katz E, Hainfeld J F, Willner I. Science, 2003, 299: 1877-1881
[16] Zhang S, Wang N, Yu H, Niu Y, Sun C. Bioelectrochemistry, 2005, 67: 15-22
[17] Yang W, Wang J, Zhao S, Sun Y, Sun C. Electrochem. Commun., 2006, 8: 665-672
[18] Liu S Q, Ju H X. Biosens. Bioelectron., 2003, 19: 177-183
[19] Luo X L, Xu J J, Du Y, Chen H Y. Anal. Biochem., 2004, 334: 284-289
[20] Huang X J, Li C C, Gu B S, Kim J H, Cho S O, Choi Y K. J. Phys. Chem. C, 2008, 112: 3605-3611
[21] Ma S Y, Lu W S, Mu J, Liu F, Jiang L. Colloids Surf. A, 2008, 324: 9-13
[22] Wen X, Xie Y T, Mak W C, Cheung K Y, Li X Y, Renneberg R, Yang S. Langmuir, 2006, 22: 4836-4842
[23] Gan X, Liu T, Zhong J, Liu X, Li G. ChemBioChem, 2004, 5: 1686-1691
[24] Welch C M, Banks C E, Simm A O, Compton R G. Anal. Bioanal. Chem., 2005, 382: 12-21
[25] 马占芳(Ma Z F), 司国丽(Si G L), 初一鸣(Chu Y M), 陈颖(Chen Y). 化学进展(Prog. Chem.), 2009, 21: 1847-1856
[26] Ren X L, Meng X, Chen D, Tang F Q, Jiao J. Biosens. Bioelectron., 2005, 21: 433-437
[27] 唐芳琼(Tang F Q), 沈继锋(Shen J F), 张金芳(Zhang J F), 张改莲(Zhang G L). 高等学校化学学报(Chem. J. Chin. Univ. ), 1999, 20: 634-636
[28] Liu Y, Chai Y Q, Zhong X, Sun A L, Tang D P, Dai J Y, Yuan R. 化学传感器(Chem. Biosens. ), 2004, 24: 25-29
[29] Zuo S H, Teng Y J, Yuan H H, Lan M B. Anal. Lett., 2008, 41: 1158-1172
[30] 任湘菱(Ren X L), 唐芳琼(Tang F Q). 催化学报(Chinese Journal of Catalysis), 2000, 21: 455-458
[31] 张琳(Zhang L), 袁金锁(Yuan J S), 唐芳琼(Tang F Q), 江龙(Jiang L). 中国科学(B辑) (Scientia Sinica Chimica B), 1995, 25: 701-703
[32] 唐芳琼(Tang F Q), 韦正(Wei Z), 陈东(Chen D), 孟宪伟(Meng X W), 苟立(Gou L), 冉均国(Ran J G). 高等学校化学学报(Chem. J. Chin. Univ. ), 2000, 21: 91-94
[33] Xu J Z, Zhang Y, Li G X, Zhu J J. Mat. Sci. Eng. C, 2004, 24: 833-836
[34] Cao Z X, Zou Y J, Xiang C L, Sun L X, Xu F. Anal. Lett., 2007, 40: 2116-2127
[35] Chopra N, Gavalas V G, Bachas L G, Hinds B J, Bachas L G. Anal. Lett., 2007, 40: 2067-2096
[36] Bauer L A, Birenbaum N S, Meyer G J J. Mater. Chem., 2004, 14: 517-526
[37] Xia L, Wei Z X, Wan M X. J. Colloid Interface Sci., 2010, 341: 1-11
[38] Zhang X Y, Li D, Bourgeois L, Wang H, Webley P A. ChemPhysChem, 2009, 10: 436-441
[39] Loaiza O A, Laocharoensuk R, Burdick J, Rodrguez M C, Pingarron J M, Pedrero M, Wang J. Angew. Chem. Int. Ed., 2007, 46: 1508-1511
[40] Lu Y S, Yang M H, Qu F L, Shen G L, Yu R Q. Bioelectrochem., 2007, 71: 211-216
[41] Ren X L, Chen D, Meng X W, Tang F Q, Du A M, Zhang L. Colloid. Surfaces B, 2009, 72: 188-192
[42] Hrapovic S, Luong J H T. Anal. Chem., 2003, 75: 3308-3315
[43] Wang J. Electroanalysis, 2005, 17: 7-14
[44] Azamian B R, Davis J J, Coleman K S, Bagshaw C B, Green M L H. J. Am. Chem. Soc., 2002, 124: 12664-12665
[45] Tsai Y C, Li S C, Chen J M. Langmuir, 2005, 21: 3653-3658
[46] Lin Y H, Lu F, Tu Y, Ren Z F. Nano Lett., 2004, 4: 191-195
[47] Joshi P P, Merchant S A, Wang Y D, Schmidtke D W. Anal. Chem., 2005, 77: 3183-3188
[48] Kim B C, Zhao X Y, Ahn H K, Kim J H, Lee H J, Kim K W, Nair S, Hsiao E, Jia H F, Oh M K, Sang B I, Kim B S, Kim S H, Kwon Y, Ha S, Gu M B, Wang P, Kim J. Biosens. Bioelectron., 2011, 26: 1980-1986
[49] Zhang M G, Smith A, Gorski W. Anal. Chem., 2004, 76: 5045-5050
[50] Liu Y, Wang M K, Dong S J, Xu Z A, Dong S J. Biosens. Bioelectron., 2005, 21: 984-988
[51] Hrapovic S, Liu Y L, Male K B, Luong J H T. Anal. Chem., 2004, 76: 1083-1088
[52] Zeng Y L, Shen G L, Yu R Q, Zhang X B, Tang C R, Shen G L, Yu R Q. Electrochem. Commun., 2007, 9: 185-190
[53] Yang M H, Shen G L, Yu R Q, Chen X H, Shen G L, Yu R Q. Biosens. Bioelectron., 2006, 21: 1791-1797
[54] Manesh K M, Kim H T, Santhosh P, Gopalan A I, Lee K P. Biosens. Bioelectron., 2008, 23: 771-779
[55] 段大雪(Duan D X), 楚霞(Chu X). 化学传感器(Chem. Biosens.), 2006, 26: 29-33
[56] Xiang L, Zhang Z N, Yu P, Zhang J, Su L, Ohsaka T, Mao L Q. Anal. Chem., 2008, 80: 6587-6593
[57] Shan C S, Yang H F, Song J F, Han D X, Ivaska A, Niu L. Anal. Chem., 2009, 81: 2378-2382
[58] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Electroanalysis, 2010, 22: 1027-1036
[59] Lu J, Drzal L T, Worden R M, Lee I. Chem. Mater., 2007, 19: 6240-6246
[60] Lu J, Do I, Drzal L T, Worden R M, Lee I. ACS Nano, 2008, 2: 1825-1832
[61] Shi W T, Ma Z F. Biosens. Bioelectron., 2010, 26: 1098-1103
[1] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[2] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[3] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[4] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[5] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[6] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[7] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[8] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[9] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[10] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[11] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[12] Yu Yin, Chunhui Ma, Wei Li, Shouxin Liu. Solvent System and Conversion Mechanism of 5-Hydroxymethylfurfural Preparation from Glucose [J]. Progress in Chemistry, 2021, 33(10): 1856-1873.
[13] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[14] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[15] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
Viewed
Full text


Abstract

Electrochemical Glucose Biosensors