中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (04): 523-544 Previous Articles   Next Articles

• Review •

Direct Oxidative Coupling Between Unfunctionalized Arene and Olefin

Weng Jianquan, Yu Zhiqin, Zhang Guofu   

  1. College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, China
  • Received: Revised: Online: Published:
PDF ( 1174 ) Cited
Export

EndNote

Ris

BibTeX

The direct oxidative coupling reaction between unfunctionalized arene and alkene, owing to its simple, efficient and environmentally friendly workup, has attracted much interest in organic synthesis. This green protocol can provide great advantages when compared with traditional Heck reaction, that it reduces the reaction steps and avoids the formation of waste inorganic salts. Especially when oxygen or air is used as the terminal oxidant in the process, the only by-product water is harmless to the environment. In this paper, new advances in transition metal-catalyzed direct oxidative coupling reaction between unfunctionalized arene and olefin are reviewed, which is presented on the basis of the different catalysts, the substrates with various types of directing groups. Moreover, some mechanisms of these novel reactions are also discussed in details.
Contents
1 Introduction
2 The system of palladium-catalyzed
2.1 Palladium-catalyzed intermolecular direct oxidative coupling
2.2 Palladium-catalyzed intramolecular direct oxidative coupling
3 The system of other catalysts
3.1 The system of rhodium-catalyzed
3.2 The system of ruthenium-catalyzed
3.3 The system of iron-catalyzed
3.4 The system of copper-catalyzed
4 Conclusions and outlook

CLC Number: 

[1] Tan K, Rozas E G, Bon R S, Guo Z, Delon C, Wetzel S, Arndt S, Alexandrov K, Waldmann H, Goody R S, Wu Y, Blankenfeldt W. J. Med. Chem., 2009, 52: 8025-8037
[2] Singh J, Zeller W, Zhou N, Hategan G, Mishra R K, Polozov A, Yu P, Onua E, Zhang J, Ramirez J L, Sigthorsson G, Thorsteinnsdottir M, Kiselyov A S, Zembower D E, Andresson T, Gurney M E. J. Med. Chem., 2010, 53: 18-36
[3] Wu C, Tang Z, Fan W, Zhu W, Wang C, Somoza E, Owino N, Li R, Ma P C, Wang Y. J. Med. Chem., 2010, 53: 139-146
[4] Lee L, Robb L M, Lee M, Davis R, Mackay H, Chavda S, Babu B, Brien E L, Risinger A L, Mooberry S L, Lee M. J. Med. Chem., 2010, 53: 325-334
[5] Xue H, Lu X, Zheng P, Liu L, Han C, Hu J, Liu Z, Ma T, Li Y, Wang L, Chen Z, Liu G. J. Med. Chem., 2010, 53: 1397-1401
[6] Shen C, Ni C, Shen Y, Huang Y, Kuo C, Wu T, Chen C. J. Nat. Prod., 2009, 72: 168-171
[7] Kesting J R, Tolderlund I, Pedersen A F, Witt M, Jaroszewski J W, Staerk D. J. Nat. Prod., 2009, 72: 312-315
[8] Pettit G R, Thornhill A, Melody N, Knight J C. J. Nat. Prod., 2009, 72: 380-388
[9] Kingston D. J. Nat. Prod., 2009, 72: 507-515
[10] Kwak G, Kim S, Fujiki M, Masuda T, Kawakami Y, Aoki T. Chem. Mater., 2004, 16: 1864-1868
[11] Takahashi M, Nishide H, Tsuchida E, Lahti P M. Chem. Mater., 1997, 9: 11-13
[12] Beletskaya I P, Cheprakov A V. Chem. Rev., 2000, 100: 3009-3066
[13] Dounay A B, Overman L E., Chem. Rev., 2003, 103: 2945-2963
[14] Moritani I, Fujiwara Y. Tetrahedron Lett., 1967, 8: 1119-1122
[15] Fujiwara Y, Moritani I, Matsuda M. Tetrahedron, 1968, 24: 4819-4824
[16] Fujiwara Y, Moritani I, Matsuda M, Teranishi S., Tetrahedron Lett., 1968, 9: 3863-3865
[17] Fujiwara Y, Moritani I, Matsuda M. Tetrahedron Lett., 1968, 9: 633-636
[18] Danno S, Moritani I, Fujiwara Y. Tetrahedron, 1969, 25: 4819-4823
[19] Fujiwara Y, Moritani I, Asano R, Teranishi S. Tetrahedron Lett., 1968, 9: 6015-6017
[20] Fujiwara Y, Moritani I, Danno S, Asano R, Teranishi S. J. Am. Chem. Soc., 1969, 91: 7166-7169
[21] Danno S, Moritani I, Fujiwara Y. Tetrahedron, 1969, 25: 4809-4813
[22] Fujiwara Y, Moritani I, Asano R, Tanaka H, Teranishi S. Tetrahedron, 1969, 25: 4815-4818
[23] Asano R, Moritani I, Sonoda A, Fujiwara Y, Teranishi S. J. Chem. Soc. (C), 1971, 3691-3692
[24] Asano R, Moritani I, Fujiwara Y, Teranishi S. Bull. Chem. Soc. Jpn., 1973, 46: 663-664
[25] Moritani I, Fujiwara Y. Synthesis, 1973: 524-533
[26] Bras J L, Muzart J. Chem. Rev., 2011, 111: 1170-1214
[27] Tsuji J, Nagashima H. Tetrahedron, 1984, 40: 2699-2702
[28] Jia C, Lu W, Kitamura T, Fujiwara Y. Org. Lett., 1999, 1: 2097-2100
[29] Yokota T, Tani M, Sakaguchi S, Ishii Y. J. Am. Chem. Soc., 2003, 125: 1476-1477
[30] Dams M, Vos D, Celen S, Jacobs P. Angew. Chem. Int. Ed., 2003, 42: 3512-3515
[31] Zhang Y, Shi B, Yu J. J. Am. Chem. Soc., 2009, 131: 5072-5073
[32] Zhang X, Fan S, He C, Wan X, Min Q, Yang J, Jiang Z. J. Am. Chem. Soc., 2010, 132: 4506-4507
[33] Mikami K, Hatano M, Terada M. Chem. Lett., 1999, 30: 55-56
[34] Thiery E, Harakat D, Bras J L, Muzart J. Organometallics, 2008, 27: 3996-4004
[35] Aouf C, Thiery E, Bras J L, Muzart J. Org. Lett., 2009, 11: 4096-4099
[36] Zhao J, Huang L, Cheng K, Zhang Y. Tetrahedron Lett., 2009, 50: 2758-2761
[37] Li P, Gu J, Ying Y, He Y, Zhang H, Zhao G, Zhu S. Tetrahedron, 2010, 66: 8387-8391
[38] Miyasaka M, Hirani K, Satoh T, Miura M. J. Org. Chem., 2010, 75: 5421-5424
[39] Jiang H, Feng Z, Wang A, Liu X, Chen Z. Eur. J. Org. Chem., 2010, 1227-1230
[40] Grimster N P, Gauntlett C, Godfrey C, Gaunt M J. Angew. Chem. Int. Ed., 2005, 44: 3125-3129
[41] Djakovitch L, Rouge P. J. Mol. Catal. A: Chem., 2007, 273: 230-239
[42] Xu Y, Wang W, Wen Z, Hartley J, Loh T. Tetrahedron Lett., 2010, 51: 3504-3507
[43] Yang Y, Chen L, Zhang Z, Zhang Y. Org. Lett., 2011, 13: 1342-1345
[44] Miura M, Tsuda T, Satoh T, Pivsa-Art S, Nomura M. J. Org. Chem., 1998, 63: 5211-5215
[45] Zhu C, Falck J R. Org. Lett., 2011, 13: 1214-1217
[46] Cai G, Fu Y, Li Y, Wan X, Shi Z. J. Am. Chem. Soc., 2007, 129: 7666-7673
[47] Li J, Mei T, Yu J. Angew. Chem. Int. Ed., 2008, 47: 6452-6455
[48] García A, Urones B, Arrayás R G, Carretero J C. Chem. Eur. J., 2010, 16: 9676-9685
[49] Horino H, Inoue N. J. Org. Chem., 1981, 46: 4416-4421
[50] Boele M, Strijidonck G, Vries A, Kamer P, Vries J, Leeuwen P. J. Am. Chem. Soc., 2002, 124: 1586-1587
[51] Lee G T, Jiang X, Prasad K, Repi O, Blacklock T J. Adv. Synth. Catal., 2005, 347: 1921-1924
[52] Wang J, Yang C, Liu L, Guo Q. Tetrahedron Lett., 2007, 48: 5449-5453
[53] Nishikata T, Lipshutz B H. Org. Lett., 2010, 12: 1972-1975
[54] Bäckvall J, Gogoll A. J. Chem. Soc. Chem. Commun., 1987, 1236-1238
[55] Amatore C, Cammoun C, Jutand A. Adv. Synth. Catal., 2007, 349: 292-296
[56] Houlden C E, Bailey C D, Ford J G, Gagné M R, Lloyd-Jones G C, Booker-Milburn K I. J. Am. Chem. Soc., 2008, 130: 10066-10067
[57] Miura M, Tsuda T, Satoh T, Nomura M. Chem. Lett., 1997, 26: 1103-1104
[58] Aoki S, Oyamada J, Kitamura T. Bull. Chem. Soc. Jpn., 2005, 78: 468-472
[59] Cho S H, Hwang S J, Chang S. J. Am. Chem. Soc., 2008, 130: 9254-9256
[60] Wu J, Cui X, Chen L, Jiang G, Wu Y. J. Am. Chem. Soc., 2009, 131: 13888-13889
[61] Shi B, Zhang Y, Lam J K, Wang D, Yu J. J. Am. Chem. Soc., 2010, 132: 460-461
[62] Engle K M, Wang D, Yu J. Angew. Chem. Int. Ed., 2010, 49: 6169-6173
[63] Lu Y, Wang D, Engle K M, Yu J. J. Am. Chem. Soc., 2010, 132: 5916-5921
[64] Baran P S, Corey E J. J. Am. Chem. Soc., 2002, 124: 7904-7905
[65] Zhang H, Ferreira E M, Stoltz B M. Angew. Chem. Int. Ed., 2004, 43: 6144-6148
[66] Schiffner JA, Wöste T H, Oestreich M. Eur. J. Org. Chem., 2010, 174-182
[67] Ferreira E M, Stoltz M B. J. Am. Chem. Soc., 2003, 125: 9578-9579
[68] Ueda S, Okada T, Nagasawa H. Chem. Commun., 2010, 2462-2464
[69] Sasuki K, Sakakura T, Tokunaga, Wada K, Tanaka M. Chem. Lett., 1988, 17: 685-688
[70] Matsumoto T, Yoshida H. Chem. Lett., 2000, 29: 1064-1065
[71] Matsumoto T, Yoshida H. Inorg. Chem. Commun., 2001, 4: 365-367
[72] Matsumoto T, Periana R A, Taube D J, Yoshida H. J. Catal., 2002, 206: 272-280
[73] Diamond S E, Szalkiewicz A, Mares F. J. Am. Chem. Soc., 1979, 101: 490-491
[74] Umeda N, Hirano K, Satoh T, Miura M. J. Org. Chem., 2009, 74: 7094-7099
[75] Chen J, Song G, Pan C, Li X. Org. Lett., 2010, 12: 5426-5429
[76] Wang F, Song G, Li X. Org. Lett., 2010, 12: 5430-5433
[77] Wang F, Song G, Du Z, Li X. J. Am. Chem. Soc., 2011, 76: 2926-2932
[78] Tsai A S, Brasse M, Bergman R G, Ellman J A. Org. Lett., 2011, 13: 540-542
[79] Rakshit S, Grohmann C, Besset T, Glorius F. J. Am. Chem. Soc., 2011, 133: 2350-2353
[80] Ueura K, Satoh T, Miura M. Org. Lett., 2007, 9: 1407-1409
[81] Mochida S, Hirano K, Satoh T, Miura M. Org. Lett., 2010, 12: 5776-5779
[82] Patureau F W, Glorius F. J. Am. Chem. Soc., 2010, 132: 9982-9983
[83] Park S H, Kim J Y, Chang S. Org. Lett., 2011, 13: 2372-2375
[84] Kahiuchi F, Yamauchi M, Chatani N, Murai S. Chem. Lett., 1996, 25: 111-112
[85] Kakiuchi F, Sato T, Yamauchi M, Chatani N, Murai S. Chem. Lett., 1999, 28: 19-20
[86] Weissman H, Song X, Milstein D. J. Am. Chem. Soc., 2001, 123: 337-338
[87] Kwon K, Lee D W, Yi C S. Organometallics, 2010, 29: 5748-5750
[88] Guan Z, Yan Z, Ren Z, Liu X, Liang Y. Chem. Commun., 2010, 2823-2825
[89] Bernini R, Fabrizi G, Sferrazza A, Cacchi S. Angew. Chem. Int. Ed., 2009, 48: 8078-8081
[1] Yandong Dou, Xiaoxu Gu, Jianze Jiang, Qing Zhu. Group-Directed C—H Functionalization [J]. Progress in Chemistry, 2018, 30(9): 1317-1329.
[2] Lixin Dai*. Ullmann Reaction,A Centennial Memory and Recent Renaissance——Related Formation of Carbon-Heteroatom Bond [J]. Progress in Chemistry, 2018, 30(9): 1257-1297.
[3] Zhang Bianxiang*, Zhao Xiaoyun, Wu Qun, Guo Yili. Application of Diaryliodonium Salts in Arylation Reaction [J]. Progress in Chemistry, 2013, 25(07): 1142-1148.
[4] Zhang Xiaowen1,2 Yin Shuangfeng1** Wu Shuisheng1 Dai Weili1 Li Wensheng1 Zhou Xiaoping1**. Organobismuth Chemistry in the Past Decade [J]. Progress in Chemistry, 2008, 20(06): 878-886.
[5] Junfang Gong,Chen Xu,Yangjie Wu**. Transition-Metal Catalyzed α-Arylation of Carbonyl Derivatives and Compounds with Acidic Hydrogen [J]. Progress in Chemistry, 2006, 18(06): 752-760.