中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (04): 512-522 Previous Articles   Next Articles

• Review •

Preparation and Modification of Graphene on Substrate

Tian Yuan, Zhao Qianying, Hu Jing, Zhou Chen, Miao Ling, Jiang Jianjun   

  1. Department of Electronic Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
  • Received: Revised: Online: Published:
PDF ( 1382 ) Cited
Export

EndNote

Ris

BibTeX

Since the successful isolation of the single atomic layer of graphite in 2004, graphene has drawn great interests due to its unique properties, including high mechanical strength, outstanding conductivity, high coefficient of thermal conductivity, etc. It is significant to manufacture large-scale and high-quality graphene on various substrates for the study of the characteristics of graphene and the research of the nano-devices basing on graphene. This paper selectively reviews recent experiment advances in graphene made on different substrates, SiC, SiO2, Cu, Ni, Co, Ru, for instance. Nowadays, we can obtain large area of high quality graphene by using different methods, such as CVD, epitaxial growth, mechanical separation, etc. We can manufacture graphene on nonmetals including SiC, GaAs, SiO2, and metals covering Cu, Ni, Co, Ru, Au, Ag, etc. This article especially reviews the interaction between the graphene and the substrates. The mechanism of interaction is closely related to the mismatch of the lattice, weakness of the bonds, the transformation of the electrons between the few layer graphene and substrates. Also, the interaction between them has great influences on geometry, energy band, and coefficient of thermal conductivity, phonon dispersion, optical waveguide performances and the properties of electrons of the graphene. The combination of the experiment and the calculation (such as density functional theory, tight-binding method, molecular dynamics simulation, etc.) can make a deeper understanding of the mechanism of the effects between graphene and different substrates, which can be served as a guide for further study.
Contents
1 Introduction
2 Experiment progresses of manufacturing graphene on various substrates
2.1 Developing graphene on nonmetal substrates
2.2 Developing grephene on metal substrates
3 Interactions between graphene and substrates
3.1 Interactions between graphene and nonmetal substrates
3.2 Interaction between graphene and metal substrates
3.3 Role of metal steps
3.4 Interactions between few layers graphene and substrates
4 Modification of graphene by substrates
4.1 Effects on geometry of graphene
4.2 Effects on bandgap of graphene
4.3 Effects on thermal conductivity
4.4 Other effects
5 Outlook

CLC Number: 

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666-669
[2] Geim A K, Novoselov K S. Nature Materials, 2007, 6(3): 183-191
[3] Geim A K. Science, 2009, 324(5934): 1530-1534
[4] Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321(5887): 385-388
[5] Meyer J C, Geim A, Katsnelson M, Novoselov K, Booth T, Roth S. Nature, 2007, 446(7131): 60-63
[6] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano letters, 2008, 8(3): 902-907
[7] Castro Neto A H, Guinea F, Peres N M R, Novoselov K, Geim A K. Rev. Mod. Phys., 2009, 81: 109-162
[8] Zhang Y B, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438: 201-204
[9] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N. Science, 2006, 312(5777): 1191-1196
[10] Gilje S, Han S, Wang M, Wang K L, Kaner R B. Nano letters, 2007, 7(11): 3394-3398
[11] Boukhvalov D, Katsnelson M. Nano Letters, 2008, 8(12): 4373-4379
[12] Elias D, Nair R, Mohiuddin T, Morozov S, Blake P, Halsall M, Ferrari A, Boukhvalov D, Katsnelson M, Geim A. Science, 2009, 323(5914): 610-613
[13] Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Lgsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B. Nature Materials, 2010, 9(4): 315-319
[14] Okamoto Y, Miyamoto Y. The Journal of Physical Chemistry B, 2001, 105(17): 3470-3474
[15] Wehling T, Novoselov K, Morozov S, Vdovin E, Katsnelson M, Geim A, Lichtenstein A. Nano letters, 2008, 8(1): 173-177
[16] Son Y W, Cohen M L, Louie S G. Nature, 2006, 444(7117): 347-349
[17] Son Y W, Cohen M L, Louie SG. Physical Review Letters, 2006, 97(21): art. no. 216803
[18] Fiori G, Iannaccone G. Electron Device Letters, IEEE, 2007, 28(8): 760-762
[19] Han M Y, Zyilmaz B, Zhang Y, Kim P. Physical Review Letters, 2007, 98(20): art. no. 206805
[20] Li X, Wang X, Zhang L, Lee S, Dai H. Science, 2008, 319(5867): 1229-1232
[21] Tapasztó L, Dobrik G, Lambin P, Biró L P. Nature Nanotechnology, 2008, 3(7): 397-401
[22] Molitor F, Jacobsen A, Stampfer C, Güttinger J, Ihn T, Ensslin K. Physical Review B, 2009, 79(7): art. no. 075426
[23] 傅强(Fu Q), 包信和(Bao X H). 科学通报(Chemistry), 2009, 54(18): 2657-2666
[24] Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451
[25] Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, Phillip N. The Journal of Physical Chemistry B, 2004, 108(52): 19912-19916
[26] Sutter P. Nature materials, 2009, 8(3): 171-172
[27] Marchini S, Günther S, Wintterlin J. Physical Review B, 2007, 76(7): art. no. 075429
[28] Coraux J, N'Diaye A T, Busse C, Michely T. Nano letters, 2008, 8(2): 565-570
[29] Dedkov Y S, Fonin M, Rüdiger U, Laubschat C. Physical Review Letters, 2008, 100(10): art. no. 107602
[30] Grüneis A, Vyalikh D V. Physical Review B, 2008, 77(19): art. no. 193401
[31] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Nano Letters, 2008, 9(1): 30-35
[32] Sutter P W, Flege J I, Sutter E A. Nature materials, 2008, 7(5): 406-411
[33] Starodub E, Maier S, Stass I, Bartelt N C, Feibelman P J, Salmeron M, McCarty K F. Physical Review B, 2009, 80(23): 235422
[34] Coraux J, N’Diaye A T, Engler M, Busse C, Wall D, Buckanie N, zu Heringdorf F J M, van Gastel R, Poelsema B, Michely T. New Journal of Physics, 2009, 11: art. no. 023006
[35] Pletikosic I, Kralj M, Pervan P, Brako R, Coraux J, N'Diaye A T, Busse C, Michely T. Physical Review Letters, 2009, 102(5): art. no. 56808
[36] Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Song Y I, Hong B H, Ahn J H. Nano letters, 2010, 10(2): 490-493
[37] Cao H, Yu Q, Jauregui L A, Tian J, Wu W, Liu Z, Jalilian R, Benjamin D K, Jiang Z, Bao J, Pei S S, Chen Y P. Applied Physics Letters, 2010, 96: art. no. 122106
[38] Staudenmaier L. Deutsch. Chem. Ges., 1898, 31: 1481-1487
[39] Brodie B. Ann. Chim. Phys., 1860, 59(7): 466-472
[40] Hummers W S, Offeman R E. Journal of the American Chemical Society, 1958, 80: 1339-1339
[41] Wintterlin J, Bocquet M L. Surface Science, 2009, 603(10/12): 1841-1852
[42] Sprinkle M, Soukiassian P, de Heer W A, Berger C, Conrad E H. Physica Status Solidi (RRL)-Rapid Research Letters, 2009, 3(6): A91-A94
[43] De Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G. Solid State Communications, 2007, 143(1/2): 92-100
[44] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Röhrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B, Seyller T. Nature Materials, 2009, 8(3): 203-207
[45] Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer W A. Nature Nanotechnology, 2010, 5: 727-731
[46] Hofrichter J, Szafranek B N, Otto M, Echtermeyer T J, Baus M, Majerus A, Geringer V, Ramsteiner M, Kurz H. Nano letters, 2009, 10(1): 36-42
[47] Yu Q, Lian J, Siriponglert S, Li H, Chen Y P, Pei S S. Applied Physics Letters, 2008, 93: art. no. 113103
[48] Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus M S, Schaefer J A, Kong J. Nano Research, 2009, 2(6): 509-516
[49] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Science, 2009, 324(5932): 1312
[50] Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao H J. Advanced Materials, 2009, 21(27): 2777-2780
[51] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457(7230): 706-710
[52] Juang Z Y, Wu C Y, Lo C W, Chen W Y, Huang C F, Hwang J C, Chen F R, Leou K C, Tsai C H. Carbon, 2009, 47(8): 2026-2031
[53] Fonin M, Sicot M, Zander O, Bouvron S, Leicht P, Rüdiger U, Weser M, Dedkov Y S, Horn K. arXiv: 1010.1389, 2010
[54] Sun Z, Hämäläinen S K, Sainio J, Lahtinen J, Vanmaekelbergh D, Liljeroth P. Physical Review B, 2011, 83(8): art. no. 081415
[55] Eberlein T A G, Jones R, Goss J P, Briddon P R. Physical Review B, 2008, 78(4): art. no. 045403
[56] Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J. Physical Review B, 2007, 76(7): art. no. 073103
[57] Wang B, Bocquet M L, Marchini S, Günther S, Wintterlin J. Phys. Chem. Chem. Phys., 2008, 10(24): 3530-3534
[58] Kim S, Ihm J, Choi H J, Son Y W. Physical Review Letters, 2008, 100(17): art. no. 176802
[59] Hiebel F, Mallet P, Varchon F, Magaud L, Veuillen J Y. Physical Review B, 2008, 78(15): art. no. 153412
[60] Seubert A, Bernhardt J, Nerding M, Starke U, Heinz K. Surface Science, 2000, 454/456: 45-48
[61] Magaud L, Hiebel F, Varchon F, Mallet P, Veuillen J Y. Physical Review B, 2009, 79(16): art. no. 161405
[62] Kang Y J, Kang J, Chang K J. Physical Review B, 2008, 78(11): art. no. 115404
[63] Shemella P, Nayak S K. Applied Physics Letters, 2009, 94: art. no. 032101
[64] Xu Y, He K T, Schmucker S W, Guo Z, Koepke J C, Wood J D, Lyding J W, Aluru N R. Nano letters, 2011, 11(7): 2735-2742
[65] Varykhalov A, Scholz M R, Kim T K, Rader O. Physical Review B, 2010, 82(12): art. no. 121101
[66] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J. Physical Review Letters, 2008, 101(2): art. no. 26803
[67] Xu Z P, Buehler M J. Journal of Physics: Condensed Matter, 2010, 22: art. no. 485301
[68] Brako R, ok ević D, Lazić P, Atodiresei N. New Journal of Physics, 2010, 12: art. no. 113016
[69] Lahiri J, Miller T S, Ross A J, Adamska L, Oleynik I I, Batzill M. New Journal of Physics, 2011, 13: art. no. 025001
[70] Chen H, Zhu W, Zhang Z. Physical Review Letters, 2010, 104(18): art. no. 186101
[71] Saadi S, Abild-Pedersen F, Helveg S, Sehested J, Hinnemann B, Appel C C, Nørskov J K. The Journal of Physical Chemistry C, 2010, 114(25): 11221-11227
[72] Lacovig P, Pozzo M, Alfè D, Vilmercati P, Baraldi A, Lizzit S. Physical Review Letters, 2009, 103(16): art. no. 166101
[73] Loginova E, Bartelt N C, Feibelman P J, McCarty K F. New Journal of Physics, 2008, 10: art. no. 093026
[74] Bengaard H, Nørskov J K, Sehested J, Clausen B S, NielsenL P, Molenbroek A M, Rostrup-Nielsen J R. J. Catal., 2002, 209: 365-384
[75] Gao J, Yip J, Zhao J, Yakobson B I, Ding F. Journal of the American Chemical Society, 2011, 133: 5009-5015
[76] Loginova E, Bartelt N C, Feibelman P J, McCarty K F. New Journal of Physics, 2009, 11: art. no. 063046
[77] Loginova E, Nie S, Thürmer K, Bartelt N C, McCarty K F. Physical Review B, 2009, 80(8): art. no. 085430
[78] McCarty K F, Feibelman P J, Loginova E, Bartelt N C. Carbon, 2009, 47(7): 1806-1813
[79] Wu P, Zhang W, Li Z, Yang J, Hou J G. The Journal of Chemical Physics, 2010, 133: art. no. 071101
[80] Varchon F, Feng R, Hass J, Li X, Nguyen B N, Naud C, Mallet P, Veuillen J Y, Berger C, Conrad E H, Magaud L. Physical Review Letters, 2007, 99(12): art. no. 126805
[81] Hass J, de Heer W A, Conrad E H. Journal of Physics: Condensed Matter, 2008, 20: art. no. 323202
[82] Hong X, Posadas A, Zou K, Ahn C, Zhu J. Physical Review Letters, 2009, 102(13): art. no. 136808
[83] Bolotin K I, Sikes K J, Hone J, Stormer H L, Kim P. Physical Review Letters, 2008, 101(9): art. no. 96802
[84] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Science, 2006, 313(5789): 951-954
[85] Ishigami M, Chen J H, Cullen W G, Fuhrer M S, Williams E D. Nano Letters, 2007, 7(6): 1643-1648
[86] Jia X, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M, Dresselhaus M S. Science, 2009, 323(5922): 1701-1705
[87] Girit C Ö, Meyer J C, Erni R, Rossell M D, Kisielowski C, Yang L, Park C H, Crommie M F, Cohen M L, Louie S G, Zettl A. Science, 2009, 323(5922): 1705-1708
[88] Sutter P, Sadowski J T, Sutter E. Physical Review B, 2009, 80(24): art. no. 245411
[89] Brugger T, Günther S, Wang B, Dil J H, Bocquet M L, Osterwalder J, Wintterlin J, Greber T. Physical Review B, 2009, 79(4): art. no. 045407
[90] Sutter P, Hybertsen M S, Sadowski J T, Sutter E. Nano letters, 2009, 9(7): 2654-2660
[91] Sutter E, Acharya D P, Sadowski J T, Sutter P. Applied Physics Letters, 2009, 94: art. no. 133101
[92] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A. Nature Materials, 2007, 6: 770-775
[93] Zhang D M, Li Z, Zhong J F, Miao L, Jiang J J. Nanotechnology, 2011, 22: art. no. 265702
[94] Starodub E, Bostwick A, Moreschini L, Nie S, El Gabaly F, McCarty K F, Rotenberg E. Physical Review B, 2011, 83(12): art. no. 125428
[95] Nagashima A, Tejima N, Oshima C. Physical Review B, 1994, 50(23): art. no. 17487
[96] Himpsel F, Christmann K, Heimann P, Eastman D, Feibelman P J. Surface Science, 1982, 115(3): L159-L164
[97] Enderlein C, Kim Y S, Bostwick A, Rotenberg E, Horn K. New Journal of Physics, 2010, 12: art. no. 033014
[98] Bianchi M, Rienks E D L, Lizzit S, Baraldi A, Balog R, Hornek L, Hofmann Ph. Physical Review B, 2010, 81(4): art. no. 041403
[99] Rusponi S, Papagno M, Moras P, Vlaic S, Etzkorn M, Sheverdyaeva P M, Pacilé D, Brune H, Carbone C. Physical Review Letters, 2010, 105(24): art. no. 246803
[100] Ju Y S, Goodson K E. Applied Physics Letters, 1999, 74: art. no. 3005
[101] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L. Science, 2010, 328(5975): 213-216
[102] Gao M, Pan Y, Zhang C, Hu H, Yang R, Lu H, Cai J, Du S, Liu F, Gao H J. Applied Physics Letters, 2010, 96: art. no. 053109
[103] Zhang Z, Chen C, Guo W. Physical Review Letters, 2009, 103(18): art. no. 187204
[104] Varykhalov A, Sánchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D, Rader O. Physical Review Letters, 2008, 101(15): art. no. 157601
[105] Allard A, Wirtz L. Nano Letters, 2010, 10(11): 4335-4340
[106] Wlasny I, Dabrowski P, Klusek Z. 2011, arXiv: 1102.4953v3
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[5] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[6] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[7] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[8] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[9] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[10] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[11] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[12] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[13] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[14] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[15] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.