中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (04): 501-511 Previous Articles   Next Articles

• Review •

Transparent Conductive Graphene Films

Tang Jingjing1, Di Feng1, Xu Xiao1, Xiao Yinghong2, Che Jianfei1   

  1. 1. Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210097, China
  • Received: Revised: Online: Published:
PDF ( 3078 ) Cited
Export

EndNote

Ris

BibTeX

Graphene, a novel two-dimensional atomic thin crystalline material, first discovered in 2004, has become one of the hottest research areas all over the world. Its unique monolayer atomic structure has exhibited fantastic physical and chemical properties, which give rise to the great performance of transparent conductive graphene films. Compared with indium tin oxide (ITO) films, transparent conductive graphene films exhibit more outstanding performance in mechanical strenght, transparency(light transmittance) and chemical inertness. In this review, we briefly summarized the optoelectronic properties of graphene, synthesis of graphene precursors and preparing methods of the transparent conductive graphene films, then discussed the unsolved problems and prospected the future developments in the end.
Contents
1 Introduction
2 Optoelectronic property of graphene
3 Precursors to transparent conductive graphene films
3.1 Graphene oxide
3.2 Reduced graphene oxide
3.3 Exfoliated graphene
3.4 Graphene hybrid material
4 Preparation methods of transparent conductive graphene films
4.1 Vacuum filtration
4.2 Spin coating
4.3 Spray coating
4.4 Chemical vapor deposition(CVD)
4.5 Other preparation methods
5 Conclusions and prospects

CLC Number: 

[1] Kumar A, Zhou C W. ACS Nano, 2010, 4(1): 11-14
[2] Hu L B, Hecht D S, Gruner G. Chemical Reviews, 2010, 110(10): 5790-5844
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666-669
[4] Geim A K, Novoselov K S. Nature Materials, 2007, 6(3): 183-191
[5] Lee C, Wei X D, Kysar J W, Hone J. Science, 2008, 321(5887): 385-388
[6] Kane C L. Nature, 2005, 438(7065): 168-170
[7] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Science, 2007, 315(5817): 1379-1379
[8] Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C, Mauri F. Nature Materials, 2007, 6(3): 198-201
[9] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Science, 2008, 320(5881): 1308-1308
[10] Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov K S, Ferrari A C. Nano Letters, 2007, 7(9): 2711-2717
[11] Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Nature Photonics, 2010, 4(9): 611-622
[12] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Science, 2006, 313 (5789): 951-954
[13] Buchsteiner A, Lerf A, Pieper J. Journal of Physical Chemistry B, 2006, 110(45): 22328-22338
[14] Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, De'ka'ny I. Chemistry of Materials, 2006, 18(11): 2740-2749
[15] Stankovich S, Piner R D, Chen X Q, Wu N Q, Nguyen S T, Ruoff R S J. Chemistry of Materials, 2006, 16(2): 55-158
[16] Eda G, Fanchini G, Chhowalla M. Nature Nanotechnology, 2008, 3(5): 270-274
[17] Pei S F, Zhao J P, Du J H, Ren W C, Cheng H M. Carbon, 2010, 48(15): 4466-4474
[18] Zhao J P, Pei S F, Ren W C, Gao L B, Cheng H M. ACS Nano, 2010, 4(9): 5245-5252
[19] Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y. ACS Nano, 2008, 2(3): 463-470
[20] Yin Z Y, Sun S Y, Salim T, Wu S X, Huang X A, He Q Y, Lam Y M, Zhang H. ACS Nano, 2010, 4(9): 5263-5268
[21] Pham V H, Cuong T V, Hur S H, Shin E W, Kim J S, Chung J S, Kim E J. Carbon, 2010, 48(7): 1945-1951
[22] Gilje S, Han S, Wang M, Wang K L, Kaner R B. Nano Letters, 2007, 7(11): 3394-3398
[23] Robinson J T, Zalalutdinov M, Baldwin J W, Snow E S, Wei Z Q, Sheehan P, Houston B H. Nano Letters, 2008, 8(10): 3441-3445
[24] Vollmer A, Feng X L, Wang X, Zhi L J, Müllen K. Applied Physics A, 2009, 94: 1-4
[25] Su C Y, Xu Y P, Zhang W J, Zhao J W, Tang X H, Tsai C H, Li L J. Chemistry of Materials, 2009, 21(23): 5674-5680
[26] Jeong S Y, Kim S H, Han J T, Jeong H J, Yang S, Lee G W. ACS Nano, 2011, 5(2): 870-878
[27] Allen M J, Tung V C, Gomez L, Xu Z, Chen L M, Nelson K S, Zhou C W, Kaner R B, Yang Y. Advanced Materials, 2009, 21(20): 2098-2102
[28] Wang S J, Geng Y, Zheng Q B, Kim J K. Carbon, 2010, 48(6): 1815-1823
[29] Park S, An J H, Jung I W, Piner R D, An S J, Li X S, Velamakanni A, Ruoff R S. Nano Letters, 2009, 9(4): 1593-1597
[30] Geng J X, Liu L J, Yang S B, Youn S C, Kim D W, Lee J S, Choi J K, Jung H T. Journal of Physical Chemistry C, 2010, 114(34): 14433-14440
[31] Yu A P, Roes I, Davies A, Chen Z W. Applied Physics Letters, 2010, 96(25): art. no. 253105
[32] Liu Y Q, Gao L, Sun J, Wang Y, Zhang J. Nanotechnology, 2009, 20(46): art. no. 465605
[33] Li D, Mueller M B, Gilje S, Kaner R B, Wallace G G. Nature Nanotechnology, 2008, 3(2): 101-105
[34] Yang F, Liu Y Q, Gao L, Sun J. Journal of Physical Chemistry C, 2010, 114(50): 22085-22091
[35] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45(7): 1558-1565
[36] Gomez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K. Nano Letters, 2009, 9(5): 3499-3503
[37] Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner R D, Stankovich S, Jung I, Field D A, Ventrice C A, Ruoff R S. Carbon, 2009, 47(1): 145-152
[38] Kudin K N, Ozbas B, Schniepp H C, Prud'homme R K, Aksay I A, Car R. Nano Letters, 2008, 8(1): 36-41
[39] Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S. Nano Letters, 2008, 8(6): 1704-1708
[40] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, McGovern I T, Holland B, Byrne M, Gun'ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. Nature Nanotechnology, 2008, 3(9): 563-568
[41] Che J F, Shen L, Xiao Y H. Journal of Materials Chemistry, 2010, 20: 1722-1727
[42] Khan U, O'Neill A, Lotya M, De S, Coleman J N. Small, 2010, 6(7): 864-871
[43] Green A A, Hersam M C. Nano Letters, 2009, 9(12): 4031-4036
[44] Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z M, McGovern I T, Duesberg G S, Coleman J N. Journal of the American Chemical Society, 2009, 131(10): 3611-3620
[45] Hamilton C E, Lomeda J R, Sun Z Z, Tour J M, Barron A R. Nano Letters, 2009, 9(10): 3460-3462
[46] Su C Y, Lu A Y, Xu Y P, Chen F R, Khlobystov A N, Li L J. ACS Nano, 2011, 5(3): 2332-2339
[47] Wassei J K, Kaner R B. Materials, 2010, 13(3): 52-59
[48] Hong W J, Xu Y X, Lu G W, Li C, Shi G Q. Electrochemistry Communications, 2008, 10(10): 1555-1558
[49] Eda G, Unalan H E, Rupesinghe N, Amaratunga G A J, Chhowalla M. Applied Physics Letters, 2008, 93(23): art. no. 233502
[50] Eda G, Chhowalla M. Nano Letters, 2009, 9(2): 814-818
[51] Xu Y F, Wang Y, Liang J J, Huang Y, Ma Y F, Wan X J, Chen Y S. Nano Research, 2009, 2(4): 343-348
[52] Shen J F, Hu Y Z, Li C, Qin C, Shi M, Ye M X. Langmuir, 2009, 25(11): 6122-6128
[53] Jo K, Lee T, Choi H J, Park J H, Lee D J, Lee D W, Kim B S. Langmuir, 2011, 27(5): 2014-2018
[54] Choi K S, Liu F, Choi J S, Seo T S. Langmuir, 2010, 26(15), 12902-12908
[55] Wang D W, Li F, Zhao J P, Ren W C, Chen Z G, Tan J, Wu Z S, Gentle I, Lu G Q, Cheng H M. ACS Nano, 2009, 3(7): 1745-1752
[56] Tung V C, Chen L M, Allen M J, Wassei J K, Nelson K, Kaner R B, Yang Y. Nano Letters, 2009, 9(5): 1949-1955
[57] King P J, Khan U, Lotya M, De S, Coleman J N. ACS Nano, 2010, 4(7): 4238-4246
[58] Bon S B, Valentini L, Kenny J M, Peponi L, Verdejo R, Lopez-Manchado M A. Physica Status Solidi A-Applications and Materials Science, 2010, 207(11): 2461-2466
[59] Hong T K, Lee D W, Choi H J, Shin H S, Kim B S. ACS Nano, 2010, 4(7): 3861-3868
[60] Tien H W, Huang Y L, Yang S Y, Wang J Y, Ma C C M. Carbon, 2011, 49(5): 1550-1560
[61] Li C Y, Li Z, Zhu H W, Wang K L, Wei J Q, Li X A, Sun P Z, Zhang H, Wu D H. Journal of Physical Chemistry C, 2010, 114(33): 14008-14012
[62] De S, King P J, Lotya M, O'Neill A, Doherty E M, Hernandez Y, Duesberg G S, Coleman J N. Small, 2010, 6(3): 458-464
[63] Orofeo C, Ago H, Hu B S, Tsuji M. Nano Research, 2011, 4(6): 531-540
[64] Vaari J, Lahtinen J, Hautojurvi P. Catalysis Letters, 1997, 44(1): 43-49
[65] Kasry A, Kuroda M A, Martyna G J, Tulevski G S, Bol A A. ACS Nano, 2010, 4(7): 3839-3844
[66] Srivastava A, Galande C, Ci L, Song L, Rai C, Jariwala D, Kelly K F, Ajayan P M. Chemistry of Materials, 2010, 22(11): 3457-3461
[67] Verma V P, Das S, Lahiri I, Choi W. Applied Physics Letters, 2010, 96(20): art. no. 203108
[68] Lee B J, Yu H Y, Jeong G H. Nanoscale Research Letters, 2010, 5(11): 1768-1773
[69] Jo G, Choe M, Cho C Y, Kim J H, Park W, Lee S, Hong W K, Kim T W, Park S J, Hong B H, Kahng Y H, Lee T. Nanotechnology, 2010, 21(17): art. no. 175201
[70] De Arco L G, Zhang Y, Schlenker C W, Ryu K, Thompson M E, Zhou C W. ACS Nano, 2010, 4(5): 2865-2873
[71] Kalita G, Masahiro M, Uchida H, Wakita K, Umeno M. Materials Letters, 2010, 64(20): 2180-2183
[72] Coraux J, Ndiaye A T, Busse C, Michely T. Nano Letters, 2008, 8(2): 565-570
[73] Starr D E, Pazhetnov E, Stadnichenko A, Boronin A, Shaikhutdinov S. Surface Science, 2006, 600(13): 2688-2695
[74] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Piner R D, Colombo L, Ruoff R S. Nano Letters, 2009, 9(12): 4359-4363
[75] Grüneis1 A, Kummer K, Vyalikh D V. New Journal of Physics, 2009, 11: art. no. 073050
[76] Liu W, Jackson B L, Zhu J, Miao C Q, Heui C, Chung, Park Y J, Sun K, Woo J, Xie Y H. ACS Nano, 2010, 4(7): 3927-3932
[77] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Science, 2009, 324(5932): 1312-1314
[78] Li X, Cai W, Colombo L, Ruoff R S. Nano Letters, 2009, 9(12): 4268-4272
[79] Wu Z S, Pei S F, Ren W C, Tang D M, Gao L B, Liu B L, Li F, Liu C, Cheng H M. Advanced Materials, 2009, 21(17): 1756-1760
[80] Zhu Y W, Cai W W, Piner R D, Velamakanni A, Ruoff R S. Applied Physics Letters, 2009, 95(10): art. no. 103104
[81] Lv X, Huang Y, Liu Z B, Tian J G, Wang Y, Ma Y F, Liang J J, Fu S P, Wan X J, Chen Y S. Small, 2009, 5(14): 1682-1687
[82] Biswas S, Drzal L T. Nano Letters, 2009, 9(1): 167-172
[83] De S, Coleman J N. ACS Nano, 2010, 4(5): 2710-2713
[84] Pan S, Aksay I A. ACS Nano, 2011, 5(5): 4073-4083
[85] Zhou X, Liu Z. Chemical Communications, 2010, 2611-2613
[86] Ma W, Song L, Yang R, Zhang T, Zhao Y, Sun L, Ren Y, Liu D, Liu L, Shen J, Zhang Z, Xiang Y, Zhou W, Xie S. Nano Letters, 2007, 7(8): 2307-2311
[87] Zhang M, Fang S L, Zakhidov A A, Lee S B, Aliev A E, Williams C D, Atkinson K R, Baughman R H. Science, 2005, 309(5738): 1215-1219
[88] Su C Y, Xu Y, Zhang W, Zhao J, Liu A, Tang X, Tsai C H, Huang Y, Li L J. ACS Nano, 2010, 4(9): 5285-5292
[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[3] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[4] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[5] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[6] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[7] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[8] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[9] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[10] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
[11] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.
[12] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[13] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[14] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.
[15] Changyuan Bao, Jiajun Han*, Jinning Cheng, Ruitao Zhang. Electrode Materials Blended with Graphene/Polyaniline for Supercapacitor [J]. Progress in Chemistry, 2018, 30(9): 1349-1363.
Viewed
Full text


Abstract

Transparent Conductive Graphene Films