中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (04): 471-482 Previous Articles   Next Articles

• Review •

Controlled Fabrication and Application of Platelet SBA-15 Materials

Ma Liqun, Zhai Shangru, Liu Na, Zhai Bin, An Qingda   

  1. Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
  • Received: Revised: Online: Published:
PDF ( 1163 ) Cited
Export

EndNote

Ris

BibTeX

Ordered SBA-15 materials are of great importance in the materials field due to the tunable pore size within 5-30 nm and excellent mechanical and hydrothermal stability in comparison with other siliceous mesostructures. More recently, platelet SBA-15 with short channels have attracted great attention because of the favorable effect for molecular delivery and mass transfer. Platelet SBA-15 materials have been synthesized using various effective synthesis pathways including co-solvent effect of alkane molecules, inducing effect of metal ions and syngeristic effect of multi-surfactants. Based on different assembly mechanisms, the current progress in designed assembly and applications of platelet SBA-15 in catalysis, adsorption and biomedical molecule immobilization are reviewed, and the perceptive on potentiality of this newcomer with fascinating characteristics is also prospected.
Contents
1 Introduction
2 Designed synthesis of platelet SBA-15 with short channels
2.1 Co-solvent effect of alkane molecules
2.2 Inducing effect of metal ions
2.3 Prompting effect of inorganic salts
2.4 Other methods
3 Advanced applications of platelet SBA-15
3.1 Favorable catalysts
3.2 Favorable supports
3.3 Adsorption of biomedical molecules
3.4 Other applications
4 Conclusion and outlook

CLC Number: 

[1] Kresge C T, Leonowicz M E, Roth W J. Nature, 1992, 359: 710-712
[2] Beck J S, Vartuli J C, Roth W J. J. Am. Chem. Soc., 1992, 114: 10834-10843
[3] Anagisawa T Y, Shimizu T, Kuroda K. Bull. Chem. Soc. Jpn., 1990, 63: 988-992
[4] Inagaki S, Fukushima Y, Kuroda K. Chem. Commun., 1993, 680-682
[5] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G, Chmelka B F, Stucky G. Science, 1998, 279: 548-552
[6] Chen S Y, Lee J, Cheng S F. J. Catal., 2010, 270: 196-205
[7] Chen S Y, Tang S Y, Lee J F, Jang L, Tatsumi T, Cheng S F. J. Mater. Chem., 2011, 21: 2255-2265
[8] Chen C S, Chen C C, Chen C T, Kao H M. Chem. Commun., 2011, 2288-2290
[9] Tian R J, Sun J M, Zhang H, Ye M L, Xie C H, Dong J, Hu J W, Ma D, Bao X H, Zou H F. Electrophoresis, 2006, 27: 742-748
[10] Zhu L, Zhang C, Liu Y, Wang D, Chen J. J. Mater. Chem., 2010, 20: 1553-1559
[11] Fan J, Lei J, Wang L, Yu C Z, Tu B, Zhao D Y. Chem. Commun., 2003, 2140-2141
[12] Sun J, Zhang H, Tian R J, Ma D, Bao X H, Su D, Zou H F. Chem. Commun., 2006, 1322-1324
[13] Schmidt-Winkel P, Lukens W, Zhao D, Yang P, Chmelka B F, Stucky G D. J. Am. Chem. Soc., 1999, 121: 254-255
[14] Sun J, Zhang H, Ma D, Chen Y, Bao X H, Klein-Hoffmann A, Su D. Chem. Commun., 2005, 5343-5345
[15] Zhao D, Sun J, Li Q, Stucky G D. Chem. Mater., 2000, 12: 275-281
[16] Ji X L, Lee K, Monjauze M, Linda F. Chem. Commun., 2008, 4288-4290
[17] Sayari A, Han B, Yang Y. J. Am. Chem Soc., 2004, 126: 14348-14349
[18] Liu J, Li C M, Yang Q H, Yang J, Li C. Langmuir, 2007, 23: 7255-7262
[19] Boissiere C, Larbot A, Lee A, Kooyman P J, Prouzet E. Chem. Mater., 2000, 12: 2902-2908
[20] Feng P, Bu X, Stucky G D, Pine D J. J. Am. Chem. Soc., 2000, 122: 994-1000
[21] Cui X G, Moon S W, Zin W C, Ha C S. Mater. Lett., 2006, 60: 3857-3860
[22] Zhang H, Sun J M, Ma D, Bao X H, Hoffmann A K, Weinberg G, Su D S, Schlogl R. J. Am. Chem. Soc., 2004, 126: 7440-7441
[23] Brinker C J. J. Non-Crystal Solids, 1998, 100: 31-50
[24] Zhang H, Sun J M, Ma D, Weinberg G, Su D S, Bao X H. J. Phys. Chem. B, 2006, 110: 25908-25915
[25] Johansson E M, Córdoba J M, Odén M. Mater. Lett., 2009, 63: 2129-2131
[26] Johansson E M, Córdoba J M, Odén M. Micropor. Mesopor. Mater., 2010, 33: 66-74
[27] Cao L, Kruk M. J. Colloid Interface Sci., 2011, 361: 472-476
[28] Chen S Y, Jang L Y, Cheng S F. Chem. Mater., 2004, 16: 4174-4180
[29] Chen S Y, Tang C Y, Chuang W T, Lee J J, Tsai Y L, Chan C C, Lin C Y, Liu Y C, Cheng S F. Chem. Mater., 2008, 20: 3906-3916
[30] Ruthstein S, Schmidt J, Kesselman E, Talmon Y, Goldfarb D. J. Am. Chem. Soc., 2006, 128: 3366-3374
[31] Chen S Y, Chen Y T, Lee J J, Cheng S F. J. Mater. Chem., 2011, 21: 5693-5701
[32] Chen S Y, Tsai H D, Chuang W T, Lee J J, Tang C Y, Lin C Y, Cheng S F. J. Phys. Chem. C, 2009, 113: 15226-15238
[33] Li F, Wang J G, Liu Y P, Zhou H J, Chen T H. J. Mater. Sci., 2009, 44: 6505-6511
[34] 袁金芳(Yuan J F), 李健生(Li J S), 顾娟(Gu J), 夏敏亚(Xia M Y), 孙秀云(Sun X Y), 韩卫清(Han W Q), 王连军(Wang L J). 化学学报(Acta Chimica Sinica), 2009, 67(11): 1271-1275
[35] 袁金芳(Yuan J F), 李健生(Li J S), 申战辉(Shen Z H), 顾娟(Gu J), 李慧君(Li H J), 孙秀云(Sun X Y), 王连军(Wang L J). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2011, 40(3): 473-478
[36] Chan Y T, Lin H P, Mou C Y, Liu S T. Micropor. Mesopor. Mater., 2009, 123: 331-338
[37] Linton P, Alfredsson V. Chem. Mater., 2008, 20: 2878-2880
[38] Flodström K, Wennerström H, Alfredsson V. Langmuir, 2004, 20: 680-688
[39] Flodström K, Teixeira C V, Amenitsch H, Alfredsson V, Lindén M. Langmuir, 2004, 20: 4885-4891
[40] Evans D F, Wennerström H. The Colloidal Domain: Where Physics, Chemistry and Biology meet, 2nd ed. New York: Wiley-VCH, 1999
[41] Goia D V, Matijevíc E. Colloids Surf. A, 1999, 146: 139-152
[42] Privman V, Goia D V, Park J, Matijevíc E. J. Colloid Interface Sci., 1999, 213: 36-45
[43] Linton P, Wennerstrom H, Alfredsson V. Phys. Chem. Chem. Phys., 2010, 12: 3852-3858
[44] 唐涛(Tang T), 李小安(Li X A), 赵燕玲(Zhao Y L), 徐耀(Xu Y), 吴东(Wu D), 孙予罕(Sun Y H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011, 32(3): 772-777
[45] Yu C Z, Tian B Z, Fan J, Stucky G D, Zhao D. J. Am. Chem. Soc., 2002, 124: 4556-4557
[46] Yu C Z, Fan J, Tian B Z, Zhao D Y. Chem. Mater., 2004, 16: 889-898
[47] Kubo S, Kosuge K. Langmuir, 2007, 23: 11758-11761
[48] Suiandi, Park S E, Han D S, Han S C, Jong M, Ohsuna T. Chem. Commun., 2006, 4131-4133
[49] Hwang Y K, Chang J C, Park S E, Kim D S, Kwon Y U, Jhung S H, Hwang J S, Park M S. Angew. Chem. Int. Ed., 2005, 117: 562-566
[50] Hwang Y K, Chang J S, Kwon Y U, Park S E. Micropor. Mesopor. Mater., 2004, 68: 21-28
[51] Wang X G, Lin K S, Chan J C C, Cheng S F. J. Phys. Chem. B, 2005, 109: 1763-1771
[52] Jiang N Z, Jin H, Mo Y H, Prasetyanto E A, Park S E. Micropor. Mesopor. Mater., 2011, 141: 16-19
[53] Wang Y G, Zhang F Y, Wang Y Q, Ren J W, Li C L, Liu X H, Guo Y, Guo Y L, Lu G Z. Mater. Chem. Phys., 2009, 115: 649-655
[54] Zhu Y S, Li H, Xu J Q, Yuan H, Wang J J, Li X X. Cryst. Eng. Commun., 2011, 13: 402-405
[55] Lee H, Kim J H, Stucky G D, Shi Y F, Park C H, Kim J M. J. Mater. Chem., 2010, 20: 8483-8487
[56] Chen B C, Lin H P, Chao M C, Mou C Y, Tang C Y. Adv. Mater., 2004, 16: 1657-1661
[57] Yeh Y O, Lin H P, Tang C Y, Mou C Y. J. Colloid Interface Sci., Doi: 10.1016/j. jcis. 2011.07.011
[58] Saravanamurugan S, Sujandi, Han D S, Koo J B, Park S E. Catal. Commun., 2008, 9: 158-163
[59] Sujandi, Prasetyanto E A, Park S E. Appl. Catal. A: Gen., 2008, 350: 244-251
[60] Cheng S F, Wang X G, Chen S Y. Top. Catal., 2009, 52: 681-687
[61] Chen S Y, Yokoi T, Tang C Y, Jang L Y, Tatsumi T, Chan J C C, Cheng S. Green Chem., 2011, 13: 2920-2930
[62] Crisci A J, Tucker M H, Lee M Y, Jang S G, Dumesic J A, Scott S L. ACS Catal., 2011, 1: 719-728
[63] Prieto G, Martnez A, Murciano R, Arribas M A. Appl. Catal. A: Gen., 2009, 367: 146-156
[64] 袁金芳(Yuan J F), 李健生(Li J S), 王 放(Wang F), 孙秀云(Sun X Y), 沈锦优(Shen J Y), 韩卫清(Han W Q), 王连军(Wang L J). 催化学报(Chinese Journal of Catalysis), 2011, 32(6): 1069-1075
[65] Wang F, Li J S, Yuan J F, Sun X Y, Shen J Y, Han W Q, Wang L J. Catal. Commun., 2011, 12: 1415-1419
[66] Lei J, Fan J, Yu C Z, Zhang L, Jiang S, Tu B, Zhao D Y. Micropor. Mesopor. Mater., 2004, 73: 121-128
[67] Liu J, Bai S Y, Zhong H, Li C, Yang Q H. J. Phys. Chem. C, 2010, 114: 953-961
[68] Tang T, Li X A, Xu Y, Wu D, Sun Y H, Xu J, Deng F. Colloids Surf. B: Biointerfaces, 2011, 84: 571-578
[69] Tang T, Zhao Y L, Xu Y, Wu D, Sun Y H, Deng F. Appl. Surf. Sci., 2011, 257: 6004-6009
[70] Cucinotta F, Carniato F, Paul G, Bracco S, Bisio C, Caldaelli S, Marchese L. Chem. Mater., 2011, 23: 2803-2809
[71] Wu Z X, Zhao D Y. Chem. Commun., 2011, 3332-3338
[72] Zhao Y L, Gao Q, Tang T, Xu Y, Wu D. Mater. Lett., 2011, 65: 1045-1047
[73] 袁金芳(Yuan J F), 李健生(Li J S), 顾娟(Gu J), 王放(Wang F), 孙秀云(Sun X Y), 韩卫清(Han W Q), 王连军(Wang L J). 物理化学学报(Acta Physics Chimica Sinica), 2010, 26(6): 1711-1716
[74] Asensio J A, Sanchez E M, Gomez-Romero P. Chem. Soc. Rev., 2010, 39: 3210-3239
[75] Fernicola A, Panero A, Scrosati B. J. Power Sources, 2008, 178: 591-595
[76] Ye Y S, Liang G W, Chen B H, Shen W C, Tseng C Y, Cheng M Y, Rick J, Huang Y J. Chang F C, Hwang B J. J. Power Sources, 2011, 196: 5408-5415
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[4] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[5] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[6] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[7] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[8] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[9] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[10] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[11] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[12] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[13] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[14] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[15] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.