中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (04): 445-455   Next Articles

• Review •

Vanadium-Based Catalysts for the Selective Catalytic Reduction of NOx with NH3

Liu Fudong, Shan Wenpo, Shi Xiaoyan, He Hong   

  1. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
  • Received: Revised: Online: Published:
PDF ( 1703 ) Cited
Export

EndNote

Ris

BibTeX

Selective catalytic reduction of NOx with NH3 or urea (NH3/Urea-SCR) as reducing agents over catalytic materials in oxygen-rich conditions is one of the most efficient and widely-used techniques for the removal of NOx from stationary and mobile sources. The most important catalyst system for NH3-SCR process is vanadium-based catalyst. In this review, the composition and NH3-SCR performance, the activity improvement of vanadium-based catalysts and the corresponding NH3-SCR reaction mechanisms are summarized. The possible developing orientations in the field of NH3-SCR technique are also prospected. The conventional V2O5-WO3 (MoO3)/TiO2 catalyst and corresponding improved vanadium-based catalysts usually show excellent deNOx efficiency and SO2 durability in the medium temperature range. On these catalysts, the highly dispersed V5+ species and poly-vanadate species are confirmed to be the active phases for NH3-SCR reaction. Over vanadium-based catalysts prepared by different methods or with different compositions, a majority of researchers consider that the NH3-SCR reaction follows an Eley-Rideal (E-R) mechanism and some researchers prefer to a Langmuir-Hinshelwood (L-H) mechanism, which might be related to the vanadium loading amount and reaction temperature. During the subsequent work in further study, the researchers should combine multiple characterization methods aiming at different catalyst systems, and pay more attention to the influence of temperature on the reaction mechanism together with the effect of surface acid/basic property on the adsorption and activation of NH3/NOx. Accordingly, much more comprehensive and authentic reaction mechanism can be concluded. The systematic understanding of the research progress in vanadium-based catalysts is beneficial to the development of highly efficient, stable vanadium-based SCR catalytic converters at the present stage, and also important for the design and synthesis of novel, efficient, environmentally-friendly vanadium-free SCR catalysts with high resistance to poisoning.
Contents
1 Introduction
2 Composition and NH3-SCR performance of vanadium-based catalysts
3 Improvement of vanadium-based catalysts
4 NH3-SCR reaction mechanism over vanadium-based catalysts
5 Comments and outlook

CLC Number: 

[1] Busca G, Lietti L, Ramis G, Berti F. Appl. Catal. B: Environ., 1998, 18: 1-36
[2] 贺泓(He H), 翁端(Weng D), 资新运(Zi X Y). 环境科学(Environmental Science), 2007, 28: 1169-1177
[3] Koebel M, Elsener M, Kleemann M. Catal. Today, 2000, 59: 335-345
[4] 管斌(Guan B), 周校平(Zhou X P), 林赫(Lin H), 王真(Wang Z), 黄震(Huang Z). 车用发动机(Vehicle Engine), 2007, 5: 1-8
[5] Hetrick C E, Lichtenberger J, Amiridis M D. Appl. Catal. B: Environ., 2008, 77: 255-263
[6] Zhao H, Bennici S, Cai J, Shen J, Auroux A. Catal. Today, 2010, 1/4: 70-77
[7] Baldychev I, Gort R J, Vohs J M. J. Catal., 2010, 269: 397-403
[8] Singh S, Jonnalagadda S B. Catal. Lett., 2008, 126: 200-206
[9] Zhao C, Wachs I E. J. Catal., 2008, 257: 181-189
[10] Giakoumelou I, Parvulescu V, Boghosian S. J. Catal., 2004, 225: 337-349
[11] Sun D, Liu Q, Liu Z, Gui G, Huang Z. Appl. Catal. B: Environ., 2009, 92: 462-467
[12] Bosch H, Janssen F. Catal. Today, 1988, 2: 369-379
[13] Matsuda S, Kato A. Appl. Catal., 1983, 8: 149-165
[14] Choo S T, Lee Y G, Nam I S, Ham S W, Lee J B. Appl. Catal. A: Gen., 2000, 200: 177-188
[15] Pavulescu V I, Grange P, Delmon B. Catal. Today, 1998, 46: 233-316
[16] Roy S, Hegde M S, Madras G. Appl. Energ., 2009, 86: 2283-2297
[17] Lietti L, Nova I, Ramis G, Dall’Acqua L, Busca G, Giamello E, Forzatti P, Bregani F. J. Catal., 1999, 187: 419-435
[18] Amiridis M D, Duevel R V, Wachs I E. Appl. Catal. B: Environ., 1999, 20: 111-122
[19] Djerad S, Tifouti L, Crocoll M, Weisweiler W. J. Mol. Catal. A: Chem., 2004, 208: 257-265
[20] Casagrande L, Lietti L, Nova I, Forzatti P, Baiker A. Appl. Catal. B: Environ., 1999, 22: 63-77
[21] Kröcher O, Elsener M. Appl. Catal. B: Environ., 2008, 77: 215-227
[22] Klimczak M, Kern P, Heinzelmann T, Lucas M, Claus P. Appl. Catal. B: Environ., 2010, 95: 39-47
[23] Birkhold F, Meingast U, Wassermann P, Deutschmann O. Appl. Catal. B: Environ., 2007, 70: 119-127
[24] Piazzesi G, Kröcher O, Elsener M, Wokaun A. Appl. Catal. B: Environ., 2006, 65: 55-61
[25] Long R Q, Yang R T. Appl. Catal. B: Environ., 2000, 24: 13-21
[26] Chae H J, Nam I S, Ham S W, Hong S B. Appl. Catal. B: Environ., 2004, 53: 117-126
[27] Kobayashi M, Kuma R, Masaki S, Sugishima N. Appl. Catal. B: Environ., 2005, 60: 173-179
[28] Parvulescu V I, Boghosian S, Parvulescu V, Jung S M, Grange P. J. Catal., 2003, 217: 172-185
[29] Kobayashi M, Kuma R, Morita A. Catal. Lett., 2006, 112: 37-44
[30] Huang Y, Tong Z Q, Wu B, Zhang J F. J. Fuel Chem. Technol., 2008, 36: 616-620
[31] Chen L, Li J, Ge M. J. Phys. Chem. C, 2009, 113: 21177-21184
[32] Li Y, Zhong Q. J. Hazard. Mater., 2009, 172: 635-640
[33] Huang Z, Zhu Z, Liu Z. Appl. Catal. B: Environ., 2002, 39: 361-368
[34] Zhang X, Huang Z, Liu Z. Catal. Commun., 2008, 9: 842-846
[35] Huang Z, Zhu Z, Liu Z, Liu Q. J. Catal., 2003, 214: 213-219
[36] Huang Z, Liu Z, Zhang X, Liu Q. Appl. Catal. B: Environ., 2006, 63: 260-265
[37] Zhu Z, Liu Z, Niu H, Liu S. Sci. China Ser. B, 2000, 43: 51-57
[38] 朱珍平(Zhu Z P). 中国科学院山西煤炭化学研究所博士论文(Doctoral Dissertation of the Institute of Coal Chemistry, Chinese Academy of Sciences), 2001
[39] Hou Y, Huang Z, Guo S. Catal. Commun., 2009, 10: 1538-1541
[40] Huang B, Huang R, Jin D, Ye D. Catal. Today, 2007, 126: 279-283
[41] Madia G, Koebel M, Elsener M, Wokaun A. Ind. Eng. Chem. Res., 2002, 41: 3512-3517
[42] Kim C H, Qi G, Dahlberg K, Li W. Science, 2010, 327: 1624-1627
[43] Wen Y, Zhang C, He H, Yu Y, Teraoka Y. Catal. Today, 2007, 126: 400-405
[44] Forzatti P, Nova I, Tronconi E. Angew. Chem. Int. Ed., 2009, 121: 8516-8518
[45] Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B. Catal. Today, 2006, 114: 3-12
[46] Inomata M, Miyamoto A, Murakami Y. J. Catal., 1980, 62: 140-148
[47] Ozkan U S, Cai Y P, Kumthekar M W. J. Catal., 1994, 149: 390-403
[48] Ozkan U S, Cai Y P, Kumthekar M W, Zhang L P. J. Catal., 1993, 142: 182-197
[49] Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey R J. J. Catal., 1995, 157: 523-535
[50] Busca G, Larrubia M A, Arrighi L, Ramis G. Catal. Today, 2005, 107/108: 139-148
[51] Ramis G, Busca G, Bregani F, Forzatti P. Appl. Catal., 1990, 64: 259-278
[52] Yin X, Han H, Miyamoto A. Phys. Chem. Chem. Phys., 2000, 2: 4243-4248
[53] Takagi M, Kawai T, Soma M, Onishi T, Tamaru K. J. Phys. Chem., 1976, 80: 430-431
[54] Takagi M, Kawai T, Soma M, Onishi T, Tamaru K. J. Catal., 1977, 50: 441-446
[55] Went G T, Leu L J, Rosin R R, Bell A T. J. Catal., 1992, 134: 492-505
[56] Odriozola J A, Heinemann H, Somorjai G A, de la Banda J F G, Pereira P. J. Catal., 1989, 119: 71-82
[57] Topsøe N Y. Science, 1994, 265: 1217-1219
[58] Topsøe N Y, Dumesic J A, Topsøe H. J. Catal., 1995, 151: 241-252
[59] 刘福东(Liu F D), 单文坡(Shan W P), 石晓燕(Shi X Y), 张长斌(Zhang C B), 贺泓(He H). 催化学报(Chinese Journal of Catalysis), 2011, 32: 1113-1128
[1] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[2] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[3] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[4] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[5] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Changfan Xu, Xin Fang, Jing Zhan, Jiaxi Chen, Feng Liang. Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials [J]. Progress in Chemistry, 2020, 32(6): 836-850.
[8] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[9] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[10] Shiying Yang, Yixuan Zhang, Di Zheng, Jia Xin. Surface Reaction Mechanism of ZVAl Applied in Water Environment:A Review [J]. Progress in Chemistry, 2017, 29(8): 879-891.
[11] Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun. Research Status of Lignin Oxidative and Reductive Depolymerization [J]. Progress in Chemistry, 2017, 29(1): 162-178.
[12] Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun. Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials [J]. Progress in Chemistry, 2016, 28(7): 1062-1069.
[13] Liu Ying, He Hongping, Wu Deli, Zhang Yalei. Heterogeneous Catalytic Ozonation Reaction Mechanism [J]. Progress in Chemistry, 2016, 28(7): 1112-1120.
[14] Zhao Yanxia, He Shenggui. Reactivity of Heteronuclear Oxide Clusters with Small Molecules [J]. Progress in Chemistry, 2016, 28(4): 401-414.
[15] Hua Donglong, Zhuang Xiaoyu, Tong Dongshen, Yu Weihua, Zhou Chunhui. Catalytic Oxidehydration of Glycerol to Acrylic Acid [J]. Progress in Chemistry, 2016, 28(2/3): 375-390.