中文
Announcement
More
Progress in Chemistry Previous Articles   

• Review •

Solid Heteropolyacids (HPAs) in Hydrolytic Conversion of Biomass

Zhang Jianming, Zhai Shangru*, Huang Dezhi, Zhai Bin, An Qingda*   

  1. Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
  • Received: Revised: Online: Published:
PDF ( 1180 ) Cited
Export

EndNote

Ris

BibTeX

With global oil production flattening out, attention is being increasingly paid to a kind of renewable clean energy-biomass. Heteropolyacids are important catalysts in the so-called clean technologies. They possess strong acidity, structural flexibility and fairly high thermal stability. It would be preferable to carry out the heteropolyacids-catalyzed reaction in biomass hydrolytic conversion. The performance of heteropolyacids towards hydrolysis of biomass in pure water, organic solvents and biphasic systems exhibit different advantages and limitations. In this paper, we reviewed the latest progress in the hydrolytic conversion of biomass into valuable chemicals using heteropolyacids in different catalytic systems. Highly effective utilization of biomass has positive effects on solving energy problems and achieving sustainable development of energy and chemical industry.Heteropolyacids used as excellent green catalyst will possess extensive application prospect in biomass conversion. Contents
1 Introduction
2 Characteristics and Utilization of Biomass
3 Structure features and current situation of HPAs
3.1 Pure HPAs
3.2 Salts of HPAs
3.3 Supported HPAs
4 Applications of HPAs in hydrolytic conversion of biomass
4.1 Water solvent
4.2 Organic solvents
4.3 Biphasic system
5 Conclusion and outlook

CLC Number: 

[1] 岑沛霖(Cen P L), 穆江华(Mu J H), 赵春晖(Zhao C H), 林建平(Lin J P). 生物加工过程(Chinese Journal of Bioprocess Engineering), 2003, 1(1): 17-22
[2] Wolfgang Palz. 能源工程(Energy Engineering), 1997, (1): 35-38
[3] Bridgwater A V. Renewable Chemical Engineering Journal, 2003, 91(2/3): 87-102
[4] 魏学锋(Wei X F), 罗婕(Luo J), 田学达(Tian X D). 冶金能源(Energy for Metallurgical Industry), 2004, 23(6): 45-49
[5] Vuthaluru H B. Fuel Processing Technology, 2004, 85(2/3): 141-155
[6] 王智微(Wang Z W), 李定凯(Li D K), 唐松涛(Tang S T), 沈幼庭(Shen Y T). 能源研究与信息(Energy Research and Information), 2002, 18(1): 21-29
[7] Yang P F, Kobayashi H, Fukuoka A. 催化学报(Chinese Journal of Catalysis), 2011, 32(5): 716-722
[8] 马隆龙(Ma L L), 吴创之(Wu C Z), 孙立(Sun L). 生物质气化技术及其应用(Biomass Gasification Technology and Its Application). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2003
[9] Huber G W, Iborra S, Corma A. Chem. Rev., 2007, 107: 2411
[10] Chheda J N, Huber G W, Dumesic J A. Angew. Chem. Int. Ed., 2007, 46: 7164-7183
[11] Christensen C H, Rass-Hansen J, Marsden C C, Taarning E, Egeblad K. ChemSusChem, 2008, 1: 283-289
[12] Zhao H, Kwak J H, Wang Y, Franz J A, White J M, Holladay J E. Energy Fuels, 2006, 20: 807-811
[13] Zhao H, Holladay J E, Wang Y, White J M, Zhang Z C. J. Biobased Mater. Bioenergy, 2007, 1: 210-214
[14] Fan L T, Gharpuray M M, Lee Y H. Cellulose Hydrolysis. Berlin: Springer, 1987
[15] Zhang Y P, Lynd L R. Biotechnol. Bioeng., 2004, 88: 797-824
[16] Gan Q, Allen S J, Taylor G. Process Biochem., 2003, 38: 1003-1018
[17] Ishikawa Y, Saka S. Cellulose, 2001, 8: 189-195
[18] Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K. Ind. Eng. Chem. Res., 2000, 39: 2883-2890
[19] Matsumura Y, Minowa T, Potic B, Kersten S. Biomass Bioenergy, 2005, 29: 269-292
[20] Yu Y, Lou X, Wu H. Energy Fuels, 2008, 22: 46-60
[21] Zhao Y, Lu W J, Wang H T. Chem. Eng., 2009, 150: 411-417
[22] Deguchi S, Tsujii K, Horikoshi K. Green Chem., 2008, 10: 623-626
[23] Fukaya Y, Hayashi K, Wada M, Ohno H. Green Chem., 2008, 10: 44-46
[24] Li C Z, Zhao Z B K. Adv. Synth. Catal., 2007, 349(11/12): 1847-1850
[25] Vitz J, Erdmenger T, Haensch C, Schubert U S. Green Chem., 2009, 11: 417-424
[26] Mandan C, Alexis T B. Green Chem., 2010, 12: 1253-1262
[27] Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2002, 124: 4974-4975
[28] Anderson J L, Ding J, Welton T, Armstrong D W. J. Am. Chem. Soc., 2002, 124: 14247-14254
[29] Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Dinga Y, Wu G. Green Chem., 2006, 8: 325-327
[30] El Seoud O A, Koschella A, Fidale L C, Dorn S, Heinze T. Biomacromolecules, 2007, 8: 2629-2647
[31] Kilpelaeinen I, Xie H, King A, Granstrom M, Heikkinen S. J. Agric. Food Chem., 2007, 55: 9142-9148
[32] Liu Q, Janssen M H A, van Rantwijk F, Sheldon R A. Green Chem., 2005, 7: 39-42
[33] Zavrel M, Bross D, Funke M, Buchs J, Spiess A C. Bioresour. Technol., 2009, 100: 2580-2587
[34] Pinkert A, Marsh K N, Pang S, Staiger M P. Chem. Rev., 2009, 109: 6712-6728
[35] Okuhara T. Mol. Catal., 1992, 74: 247-251
[36] 吴越(Wu Y), 叶兴凯(Ye X K), 谢文华(Xie W H), 杨向光(Yang X G). CN1125640, 1996
[37] He Y G. Chinese Journal of Catalysis, 1999, 20(4): 20-25
[38] Blaso T, Corma A, Martinez-Escolano A. J.Catal., 1998, 177: 306-313
[39] López-Salinas E, Hernándéz-Cortéz J G, Cortzes-Jácome M A, Navarrete J, Llanos M E, Vázquez A, Armendáriz H, López T. Appl. Catal.A Gen., 1998, 175: 43-53
[40] 潘海水(Pan H S), 周勤伟 (Zhou Q W), 陈安均 (Chen A J), 刘定江(Liu D J), 邓景发(Deng J F). 应用化学(Applied Chemistry), 1989, 6(2): 11-14
[41] 侯文华(Hou W H), 颜其洁(Yan Q J). 分子催化(Journal of Molecular Catalysis), 1990, 4(1): 13-19
[42] Knifton J F, Edwards J C. Appl. Catal.A Gen., 1999, 183: 1-13
[43] Shikata S, Nakata S, Okuhara T, Misono M. J. Catal.,1997, 166: 263-271
[44] 胡玉才(Hu Y C), 叶兴凯(Ye X K), 吴越 (Wu Y). 石油学报(石油加工)(Acta Petrolei Sinca (Petroleum Processing Section)), 1996, 12(2): 51-58
[45] 楚文玲 (Cu W L), 杨向光(Yang X G), 叶兴凯(Ye X K), 等. 石油化工(Petroleum Technology), 1996, 25: 462-465
[46] Deng W P, Liu M, Zhang Q H, Tan X S, Wang Y. Chem. Commun., 2010, 46: 2668-2670
[47] Deng W P, Liu M, Zhang Q H, Tan X S, Wang Y. Catal. Today, 2011, 164(1): 461-466
[48] Shimizu K, Furukawa H, Kobayashi N, Itaya Y, Satsuma A. Green Chem., 2009, 11: 1627-1632
[49] Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B. Chem. Commun., 2010, 46: 3577-3579
[50] Palkovits R, Tajvidi K, Ruppert A M, Procelewska J. Chem. Commun., 2011, 47: 576-578
[51] Zhao S, Cheng M X, Li J, Tian J, Wang X H. Chem. Commun., 2011, 47: 2176-2178
[52] Zhao Q, Wang L, Zhao S, Wang X H, Wang S T. Fuel, 2011, 90(6): 2289-2293
[53] Shimizu K, Uozumi R, Satsuma A. Proceedings of International Symposium on EcoTopia Science 2007, ISETS07(2007)
[54] Tian J, Wang J H, Zhao S, Jiang C Y, Zhang X, Wang X H. Cellulose, 2010, 17: 587-594
[55] Shatalov A A, Evtuguin D V, Neto C P. Carbohydrate Polymers, 2000, 43: 23-32
[56] Dias A S, Pillinger M, Valente A A. Applied Catalysis A: General, 2005, 285: 126-131
[57] Dias A S, Lima S, Pillinger M, Valente A A. Carbohydrate Research, 2006, 341: 2946-2953
[58] Dias A S, Pillinger M, Valente A A. Microporous and Mesoporous Materials, 2006, 94: 214-225
[59] Shimizu K, Uozumi R, Satsuma A. Catal. Commun., 2009, 10: 1849-1853
[60] Fan C Y, Guan H Y, Zhang H, Wang J H, Wang S T, Wang X H. Biomass and Bioenergy, 2011, 35(7): 2659-2665
[61] Flora C, Franck R, Catherine P, Amandine C, Emmanuelle G, Nadine E. Applied Catalysis B: Environmental, 2011, 105: 171-181
[62] Ogasawara Y, Itagaki S, Yamaguchi K, Mizuno N. ChemSusChem, 2011, 4: 519-525
[63] Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M. J. Am. Chem. Soc., 2008, 130: 12787-12793
[64] Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M. J. Phys. Chem., 2009, C113: 3181-3188
[65] Onda A, Ochi T, Yanagisawa K. Green Chem., 2008, 10: 1033-1037
[66] Rinaldi R, Palkovits R, Schüth F. Angew. Chem. Int. Ed., 2008, 47: 8047-8050
[67] Roman-Leshkov Y, Chheda J N, Dumesic J A. Science, 2006, 312:1933-1937
[68] Qi X H, Watanabe M, Aida T M, Smith R L Jr. Green Chem., 2008, 10: 799-805
[69] Nakamura Y, Morikawa S. Bull. Chem. Soc. Jpn., 1980, 53: 3705-3706
[70] Vinke P, van Bekkum H. Starch/Stäke, 1992, 44: 90-96
[71] Mercadier D, Rigal L, Gaset A, Gorrichon J P. J. Chem. Technol. Biotechnol., 1981, 31: 489-496
[72] Lansalot-Matras C, Moreau C. Catal. Commun., 2003, 4: 517-520
[73] Takagaki A, Tagusagawa C, Domen K. Chem. Commun., 2008, 5363-5365
[74] Carlini C, Patrono P, Galletti A M R, Sbrana G. Appl. Catal. A: Gen., 2004, 275: 111-118
[75] Armaroli T, Busca G, Carlini C, Giuttari M, Galletti A M R, Sbrana G. J. Mole. Catal A: Chem., 2000, 151: 233-243
[76] Asghari F S, Yoshida H. Carbohydr. Res., 2006, 341: 2379-2387
[77] Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P. Appl. Catal. A: Gen., 1996, 145: 211-224
[78] Rivalier P, Duhamet J, Moreau C, Durand R. Catal. Today, 1995, 24: 165-171
[79] Okuhara T, Mizuno N, Misono M. Advances in Catalysis. London: Academic Press, 1996, 41: 113-252
[80] 温朗友(Wen L Y), 闵恩泽(Min E Z). 石油化工(Petrochemical Technology), 2000, 29(1): 49-54
[81] Okuhara T. Catal. Today, 2002, 73(1): 167-176
[82] Misono M, Ono I, Koyano G. Pure Appl. Chem., 2000, 72(7): 1305-1311
[83] 闫永胜(Yan Y S), 霍鹏伟(Huo P W), 刘箭(Liu J), 李松田(Li S T), 王良(Wang L). 吉林师范大学学报(自然科学版)(Journal of Jilin Normal University(Natural Science Edition)), 2007, 28(3): 24-27
[84] 王泳(Wang Y), 徐爱民(Xu A M), 许锡恩(Wu X E). 齐鲁石油化工(QILU Petrochemical Technology), 1999, 27 (2): 131-134
[85] 吴越(Wu Y), 叶兴凯(Ye X K), 杨向光(Yang X G), 王新平(Wang X P), 楚文玲(Chu W L), 胡玉才(Hu Y C). 分子催化(Journal of Molecular Catalysis), 1996, 10(4): 299-319
[86] 牟莉(Mou L),樊孟琦(Fan M Q),王涛(Wang T).长春大学学报(Journal of Changchun University), 2008, 18(6): 42-44
[87] Kozhevnikov I V. Russian Chem. Rev., 1987, 56: 811-825
[88] 谢文华(Xie W H), 张伟(Zhang W), 叶兴凯(Ye X K), 杨向光(Yang X G), 吴越(Wu Y). 分析化学(Chinese Journal of Analytical Chemistry), 1996, 24(9): 1069-1073
[89] Kozhevnikov I V. Chem. Rev., 1998, 98: 171-198
[90] Okuhara T. Chem. Rev., 2002, 102: 3641-3665
[91] Corma A, Martínez A, Martínez C. J. Catal., 1996, 164: 422-432
[92] Knifton J F. US 4827048,1989
[93] Knifton J F. US 5300703,1994
[94] Bara T, Ono Y. Appl. Catal., 1986, 22: 321-324
[95] Kozhevnikov I V, Sinnema A, Jansen R. Catal. Lett., 1995, 30: 241-252
[96] Kresge C T, Marler D O, Rav G S. US 5324881, 1994
[97] Kresge C T, Marler D O, Rav G S. US 5366945, 1994
[98] Zhu P, Wang D H. Science in China Ser. B Chem., 2007, 50(2): 249-252
[99] Kwon T, Pinnavvaia T J. J. Mol. Catal., 1992, 74: 23-33
[100] Chheda J N, Román-Leshkov Y, Dumesic J A. Green Chem., 2007, 9: 342-350
[101] Li C, Wang Q, Zhao Z K. Green Chem., 2008, 10:177-182
[102] Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H. J. Phys. Chem. C, 2009, 113: 3181-3188
[103] Rinaldi R, Palkovits R, Schüth F. Angew. Chem. Int. Ed., 2008, 47: 8047-8050
[104] Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S. J. Am. Chem. Soc., 2008, 130: 12787-12793
[105] Jollet V, Chambon F, Rataboul F, Cabiac A, Pinel C, Guillon E, Essayem N. Green Chem., 2009, 2052-2060
[106] Rapp K M. US4740605, 1987
[107] Mercadier D, Rigal L, Gaset A, Gorrichon J P. J. Chem. Technol. Biotechnol., 1981, 31: 489-496
[108] 蒋安仁(Tsiang A R), 蔡光缵(Tsai K T), 顾翼东(Ku Y T). 复旦大学学报(J. Fudan Univ. (Natural Science)), 1963, (4): 451-457
[109] Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2002, 124: 4974-4975
[110] Anderson J L, Ding J, Welton T, Armstrong D W. J. Am. Chem. Soc., 2002, 124: 14247-14254
[111] Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Dinga Y, Wu G. Green Chem., 2006, 8: 325-327
[112] Kilpelaeinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos D S. J. Agric. Food Chem., 2007, 55: 9142-9148
[113] Pinkert A, Marsh K N, Pang S, Staiger M P. Chem. Rev., 2009, 109: 6712-6728
[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[3] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[4] Yajuan Wu, Jingwen Luo, Yongji Huang. Catalytic Synthesis of N,N-Dimethylformamide from Carbon Dioxide and Dimethylamine [J]. Progress in Chemistry, 2022, 34(6): 1431-1439.
[5] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[6] Congyuan Zhao, Jing Zhang, Zheng Chen, Jian Li, Lielin Shu, Xiaoliang Ji. Effective Constructions of Electro-Active Bacteria-Derived Bioelectrocatalysis Systems and Their Applications in Promoting Extracellular Electron Transfer Process [J]. Progress in Chemistry, 2022, 34(2): 397-410.
[7] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[8] Li Jintao, Zhang Mingzu, He Jinlin, Ni Peihong. Application of Deep Eutectic Solvents in Polymer Synthesis [J]. Progress in Chemistry, 2022, 34(10): 2159-2172.
[9] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
[10] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[11] Yu Yin, Chunhui Ma, Wei Li, Shouxin Liu. Solvent System and Conversion Mechanism of 5-Hydroxymethylfurfural Preparation from Glucose [J]. Progress in Chemistry, 2021, 33(10): 1856-1873.
[12] Dechao Wang, Yangyang Xin, Xiaoqian Li, Dongdong Yao, Yaping Zheng. Porous liquids and Their Applications in Gas Capture and Separation [J]. Progress in Chemistry, 2021, 33(10): 1874-1886.
[13] Lixu Lei, Yiming Zhou. Solvent-Free or Less-Solvent Solid State Reactions [J]. Progress in Chemistry, 2020, 32(8): 1158-1171.
[14] Qilu Yao, Hongxia Du, Zhang-Hui Lu. Catalytic Hydrolysis of Ammonia Borane for Hydrogen Production [J]. Progress in Chemistry, 2020, 32(12): 1930-1951.
[15] Bingqian Huang, Liyan Wang, Xuan Wei, Weichao Xu, Zhen Sun, Tinggang Li. Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production [J]. Progress in Chemistry, 2020, 32(12): 2034-2048.