中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Environmental Photochemistry of Iron Complexes and Their Involvement in Environmental Chemical Processes

Wang Zhaohui1,2*, Song Wenjing2, Ma Wanhong2, Zhao Jincai2   

  1. 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China;
    2. Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
  • Received: Revised: Online: Published:
PDF ( 1653 ) Cited
Export

EndNote

Ris

BibTeX

Iron is one of the most abundant metals in the continental crust, while most of dissolved iron is complexed with organic ligands. The irradiated iron complexes in the environment undergo direct photolysis and secondary (photo)chemical reactions, generating Fe(Ⅱ), organic radicals and some reactive oxygen species (ROS). Environmental photochemistry of iron complexes can greatly affect ROS dynamics, organics degradation and redox cycling of other elements. Therefore, it is becoming a hot topic in the international field of environmental sciences research. This review firstly summarizes three types of iron complexes including inorganic Fe complexes, simple organic Fe complexes and macrocyclic organic Fe complexes, and photoreduction mechanisms of iron complexes. Secondly, the potential oxidants of Fe(Ⅱ) in acidic aquatic environment are introduced. The oxidation kinetics, possible reaction mechanism and influencing factors (such as dissolved oxygen concentration, pH, ionic strength, temperature and natural organic matters concentrations) of (photo)chemical oxidation of Fe(Ⅱ) are elucidated. This review also highlights recent findings in the study of environmental processes involving iron photochemistry. Finally, the future prospects in this field are discussed based on the current status. Contents
1 Introduction
2 Princile of environmental photochemistry of iron complexes
2.1 Photoreduction of Fe(Ⅲ)
2.2 (Photo)chemical oxidation of Fe(Ⅱ)
3 Some environmental chemical processes involved in Fe complexes
3.1 Production and decay of reactive oxygen species (ROS)
3.2 Degradation of organic compounds
3.3 Coupling with other metals' redox cycling
4 Conclusions and outlook

CLC Number: 

[1] Manahan S E. Environmental Chemistry. Chelsea, 4th ed. MI : Lewis Publishers, 1990
[2] 赫茨英格(Hutzinger O). 环境化学手册. 第一分册, 自然环境和生物地球化学循环(Handbook of Environmental Chemistry. The First Volume, the natural environment and the Biogeochemical Cycles). 北京: 中国环境科学出版社(Beijing: China Environmental Science Press), 1987
[3] Zika R G, Copper W J. Photochemistry of Environmental Aquatic Systems. Washington, DC: American Chemical Society, 1987
[4] 邓南圣(Deng N S), 吴峰(Wu F). 环境光化学(Environmental Photochemistry). 北京: 化学工业出版社 (Beijing: Chemical Industry Publisher), 2003
[5] Helz G R, Zepp R G, Crosby D G. Aquatic and Surface Photochemistry. Boca Raton: Lewis Publishers, 1994. 3-37
[6] Helz G R, Zepp R G, Crosby D G. Aquatic and Surface Photochemistry. Boca Raton: Lewis Publishers, 1994. 53-73
[7] Perret D, Gaillard J, Dominik J, Atteia O. Environ. Sci. Technol., 2000, 34: 3540-3546
[8] Barbeau K. Photochem. Photobiol., 2006, 82: 1505-1516
[9] Song W J, Ma W H, Ma J H, Chen C C, Zhao J C, Xu Y M, Huang Y P. Environ. Sci. Technol., 2005, 39: 3121-3127
[10] Zuo Y G, Holgné J. Environ. Sci. Technol., 1992, 26: 1014-1022
[11] Zuo Y G, Holgné J. Science, 1993, 260: 71-73
[12] Faust B C, Anastasio C, Allen J M, Arakaki T. Science, 1993, 260: 73-75
[13] Wilson C L, Hinman N W, Cooper W J, Brown C F. Environ. Sci. Technol., 2000, 34: 2655-2662
[14] Southworth B A, Voelker B M. Environ. Sci. Technol., 2003, 37: 1130-1136
[15] Paciolla M D, Davies G, Jansen S. Environ. Sci. Technol., 1999, 33: 1814-1818
[16] Jeong J, Yoon J. Water Res., 2005, 39: 2893-2900
[17] Kotronarout A, Sigg L. Environ. Sci. Technol., 1993, 27: 2725-2735
[18] Brandt C, Fábián I, van Eldik R. Inorg. Chem., 1994, 33: 687-701
[19] Thoral S, Rose J, Garnier J M, Vangeen A, Refait P, Traverse A, Bottero J Y. Environ. Sci. Technol., 2005, 39: 9478-9485
[20] Hug S J, Leupin O. Environ. Sci. Technol., 2003, 37: 2734-2742
[21] Hug S J, Canonica L, Wegelin M, Gechter D, Von Gunten U. Environ. Sci. Technol., 2001, 35: 2114-2121
[22] Voegelin A, Hug S J. Environ. Sci. Technol., 2003, 37: 972-978
[23] Gaberell M, Chin Y P, Hug S J, Sulzberger B. Environ. Sci. Technol., 2003, 37: 4403-4409
[24] Zhang H, Bartlett R J. Environ. Sci. Technol., 1999, 33: 588-594
[25] Wielinga B, Mizuba M M, Hansel C, Fendorf S. Environ. Sci. Technol., 2001, 35: 522-527
[26] Buerge I J, Hug S J. Environ. Sci. Technol., 1999, 33: 4285-4291
[27] Voelker B M, Morel F M M, Sulzberger B. Environ. Sci. Technol., 1997, 31: 1004-1011
[28] Gao H Z, Zepp R G. Environ. Sci. Technol., 1998, 32: 2940-2946
[29] Kwan W P, Voelker B M. Environ. Sci. Technol., 2003, 37: 1150-1158
[30] Kwan W P, Voelker B M. Environ. Sci. Technol., 2002, 36: 1467-1476
[31] Zuo Y G, Holgné J. Atmos. Environ., 1994, 28: 1231-1239
[32] Lee W J, Batchelor B. Environ. Sci. Technol., 2002, 36: 5147-5154
[33] Lee W J, Batchelor B. Environ. Sci. Technol., 2002, 36: 5348-5354
[34] Maithreepala R A, Doong R A. Environ. Sci. Technol., 2005, 39: 4082-4090
[35] Naka D, Kim D, Strathmann T. J. Environ. Sci. Technol., 2006, 40: 3006-3012
[36] Hofstetter T B, Neumann A, Schwarzenbach R P. Environ. Sci. Technol., 2006, 40: 235-242
[37] Royer R, Burgos W, Fisher A, Unz R, Dempsey B. Environ. Sci. Technol., 2002, 36: 1939-1946
[38] Hacherl E, Kosson D, Young L, Cowan R M. Environ. Sci. Technol., 2001, 35: 4886-4893
[39] Barbeau K, Rue E L, Bruland K W, Butler A. Nature, 2001, 413: 409-413
[40] Kostka J E, Haefele E, Viehweger R, Stucki J W. Environ. Sci. Technol., 1999, 33: 3127-3133
[41] Li Y L, Vali H, Sears S K, Yang J, Deng B L, Zhang C L. Geochimicaet Cosmochimica Acta, 2004, 68: 3251-3260
[42] Deguillaume L, Leriche M, Desboeufs K, Mailhot G, George C, Chaumerliac N. Chem. Rev., 2005, 105: 3388-3431
[43] Faust B C, Hoigné J. Atmos. Environ., 1990, 24A: 79-89
[44] Balzani V, Carassiti V. Photochemistry of Coordination Compounds. New York: Academic Press, 1970
[45] Sima J, Makanova J. Coord. Chem. Rev., 1997, 160: 161-189
[46] David F, David P G. J. Phys. Chem., 1976, 80: 579-583
[47] Nadtochenko V A, Kiwi J. Inorg. Chem., 1998, 37: 5233-5238
[48] Benkelberg H, Warneck P. J. Phys. Chem., 1995, 99: 5214-5221
[49] Zuo Y G, Deng Y W. Chemosphere, 1997, 35: 2051-2058
[50] Zuo Y G. Doctoral Dissertation of Swiss Federal Institute of Technology, 1992
[51] Faust B C, Zepp R G. Environ. Sci. Technol., 1993, 27: 2517-2522
[52] Parker C A, Hatchard C G. J. Phys. Chem., 1959, 63: 22-26
[53] Patterson J I H, Perone S P. J. Phys. Chem., 1973, 77: 2437-2440
[54] Chen J, Zhang H, Tomov I V, Rentzepis P M. Inorg. Chem. Acta, 2008, 47: 2024-2032
[55] Pozdnyakov I P, Kel O V, Plyusnin V F, Grivin V P, Bazhin N M. J. Phys. Chem., 2008, 112: 8316-8322
[56] Hatchard C G, Parker C A. Proc. Royal Soc. London, Ser. A, 1956, 235: 518-536
[57] Hutzinger O. Handbook of Environmental Chemistry, Volume 2: Part M: Environmental Photochemistry Part Ⅱ: Reactions and Processes. Berlin: Springer-Verlag, 2005. 255-298
[58] Vincze L, Papp S. J. Photochem., 1987, 36: 289-296
[59] Abrahamson H B, Rezvani A B, Brushmiller J G. Inorg. Chim. Acta, 1994, 226: 117-127
[60] Kuma K, Nakabayashi S, Matsunaga K. Water Res., 1995, 29: 1559-1569
[61] Boule P. The Handbook of Environmental Chemistry. Berlin: Springer-Verlag, 1999. 181
[62] Alder A C, Siegrist H, Gujer W, Giger W. Water Res., 1990, 24: 733-742
[63] Kari F G, Hilger S, Canonica S. Environ. Sci. Technol., 1995, 29: 1008-1017
[64] Carey J H, Langford C H. Can. J. Chem., 1973, 51: 3665-3670
[65] Natarajan P, Endicott J F. J. Phys. Chem., 1973, 77: 2049-2054
[66] Carey J H, Langford C H. Can. J. Chem., 1975, 53: 2436-2440
[67] Mailhot G, Bordes A L, Bolte M. Chemosphere, 1995, 30: 1729-1737
[68] Finden D A S, Tipping E, Jaworski G H M, Reynolds C S. Nature, 1984, 309: 783-784
[69] Gao H, Zepp R G. Environ. Sci. Technol., 1988, 32: 2940-2946
[70] Sigel A, Sigel H. Plants and Animals. New York: Marcel Dekker, 1998, 239-328
[71] Barbeau K, Zhang G P, Live D H, Butler A. J. Am. Chem. Soc., 2002, 124: 378-379
[72] Barbeau K, Rue E L, Trick C G, Bruland K T, Butler A. Limnol. Oceanogr., 2003, 48: 1069-1078
[73] Logan S R. J. Chem. Soc. Faraday Trans., 1990, 86: 615-617
[74] Braterman P S, Cairns-Smith A G, Sloper R W. Nature, 1983, 303: 163-164
[75] Behra P, Sigg L. Nature, 1990, 344: 419-421
[76] King D W. Environ. Sci. Technol., 1998, 32: 2997-3003
[77] Feig A L, Lippard S J. Chem. Rev., 1994, 94: 759-805
[78] Seibig S, Eldik V R. Inorg. Chem., 1997, 36: 4115-4120
[79] King D W, Loumsbiru H A, Millero F. J. Environ. Sci. Technol., 1995, 29: 818-824
[80] Emmenegger L, King D W, Sigg L, Sulzberger B. Environ. Sci. Technol., 1998, 32: 2990-2996
[81] Theis T L, Singer P C. Environ. Sci. Technol., 1974, 8: 569-573
[82] Singer P C, Stumm W. Science, 1970, 167: 1121-1123
[83] Kallies B, Meier R. Inorg. Chem., 2001, 40: 3101-3112
[84] Flynn C M. Chem. Rev., 1984, 84: 31-41
[85] Millero F J, Sotolongo S, Izaguirre M. Geochim. Cosmochim. Acta, 1987, 51: 793-801
[86] Millero F J. Mar. Chem., 1988, 28: 1-18
[87] Millero F J, Izaguirre M. J. Solut. Chem.,1989, 18: 585-599
[88] Millero F J, Sotolongo S. Geochim. Cosmochim. Acta, 1989, 53: 1867-1873
[89] Tamura H, Goto K, Nagayama M. Corros. Sci., 1976, 16: 197-207
[90] Croot P L, Laan P. Anal. Chim. Acta, 2002, 466: 261-273
[91] Sulzberger B, Schnoor J L, Giovanoli R, Hering J G, Zobrist J. Aquat. Sci., 1990, 52: 56-74
[92] Barry R C, Schnoor J L, Sulzberger B, Sigg L, Stumm W. Water Res.,1994, 28: 323-333
[93] Rose A, Waite T D. Environ. Sci. Technol., 2002, 36: 433-444
[94] Pullin M J, Cabaniss S E. Geochim. Cosmochim. Acta, 2003, 67: 4067-4077
[95] Pullin M J, Cabaniss S E. Geochim. Cosmochim. Acta, 2003, 67: 4079-4089
[96] Voelker B M, Sulzberger B. Environ. Sci. Technol., 1996, 30: 1106-1114
[97] Petigara B R, Blough N V, Mignerey A C. Environ. Sci. Technol., 2002, 36: 639-645
[98] Lin S S, Gurol M D. Environ. Sci. Technol., 1998, 32: 1417-1423
[99] 何惧(He J). 中国科学院化学研究所博士论文(Doctoral Dissertation of Institute of Chemistry, Chinese Academy of Sciences), 2003
[100] Kawaguchi H, Inagaki A. Chemosphere, 1994, 28: 57-62
[101] Aguer J P, Mailhot G, Bolte M. New J. Chem., 2006, 30: 191-196
[102] Andrianirinaharivelo S L, Bolte M. Chemosphere, 1992, 24: 953-958
[103] Bajt O, Mailhot G, Bolte M. Appl. Catal. B-Environ., 2001, 33: 239-248
[104] Catastini C, Sarakha M, Mailhot G, Bolte M. Sci. Total Environ., 2002, 298: 219-228
[105] Debbache N, Djebbar K, Lavedrine B, Mailhot G, Bolte M. Chemosphere, 2008, 72: 457-464
[106] Debbache N, Mailhot G, Djebbar K, Lavedrine B, Bolte M. Int. J. Photoenergy, 2005, 7: 71-78
[107] Galichet F, Mailhot G, Bonnemoy F, Bohatier J, Bolte M. Pest Manage. Sci., 2002, 58: 707-712
[108] Mailhot G, Brand N, Astruc M, Bolte M. Appl. Organomet. Chem., 2002, 16: 27-33
[109] Mazellier P, Bolte M J. Photochem. Photobiol. A-Chem., 1996, 98: 141-147
[110] Mazellier P, Bolte M. Chemosphere, 1997, 35: 2181-2192
[111] Mazellier P, Jirkovsky J, Bolte M. Pest. Sci., 1997, 49: 259-267
[112] Mest'ankova H, Mailhot G, Pilichowski J F, Krysa J, Jirkovsky J, Bolte M. Chemosphere, 2004, 57: 1307-1315
[113] Poulain L, Mailhot G, Wong-Wah-Chung P, Bolte M. J. Photochem. Photobiol. A-Chem., 2003, 159: 81-88
[114] Wong-Wah-Chung P, Mailhot G, Aguer J P, Bolte M. Chemosphere, 2006, 65: 2185-2192
[115] Wong-Wah-Chung P, Mailhot G, Bolte M. Inte. J. Photoenergy, 2003, 5: 37-42
[116] Andreozzi R, Marotta R. Water Res., 2004, 38: 1225-1236
[117] Mailhot G, Astruc M, Bolte M. Organomet. Chem., 1999, 13: 53-61
[118] Ou X X, Quan X, Chen S, Zhao H M, Zhang Y B J. Agr. Food Chem., 2007, 55: 8650-8656
[119] Ou X X, Chen S, Quan X, Zhao Y Z J. Geochem. Explor., 2009, 102: 49-55
[120] Kwan W, Voelker B M. Environ. Sci. Technol., 2004, 38: 3425-3431
[121] Fukushima M, Tatsumi K. Environ. Sci. Technol., 2001, 35: 3683-3690
[122] Fukushima M, Tatsumi K, Morimoto K. Environ. Sci. Technol., 2000, 34: 2006-2013
[123] Jeong H Y, Hayes K. Environ. Sci. Technol., 2003, 37: 4650-4655
[124] O'Loughlin E J, Hemner K M, Burris D. Environ. Sci. Technol., 2003, 37: 2905-2912
[125] Elsner M, Schwarzenbach R P, Haderlein S B. Environ. Sci. Technol., 2004, 38: 799-807
[126] Zuo Y G, Zhan J, Wu T X. J. Atmos. Chem., 2005, 50: 195-210
[127] Pehkonen S O, Slefert R, Erel Y, Webb S, Hoffmann M R. Environ. Sci. Technol., 1993, 27: 2056-2062
[128] Kimbrough D E, Cohen Y, Winer A M, Creelman L, Mabuni C. Crit. Rev. Environ. Sci. Technol., 1999, 29: 1-46
[129] Espenson J H. J. Am. Chem. Soc., 1970, 92: 1880-1883
[130] Buerge I J, Hug S J. Environ. Sci. Technol., 1997, 31: 1426-1432
[131] Kaczynski S E, Kieber R J. Environ. Sci. Technol., 1993, 27: 1572-1578
[132] Kieber R, Helz G R. Environ. Sci. Technol., 1992, 26: 307-312
[133] Gaberell M, Chin Y P, Hug S J, Sulzberger B. Environ. Sci. Technol., 2003, 37: 4403-4409
[134] Hug S J, Laubscher H U, James B R. Environ. Sci. Technol., 1997, 31: 160-170
[135] Zhang H, Bartlett R J. Environ. Sci. Technol., 1999, 33: 588-594
[136] Wang Z H, Ma W H, Chen C C, Zhao J C. Environ. Sci. Technol., 2008, 42: 7260-7266
[1] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[2] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[3] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[4] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[5] Jiali Zhong, Weigang Wang, Chao Peng, Nan Ma, Zhijun Wu, Maofa Ge. Atmospheric Aerosol Hygroscopicity and Their Influence on Environment [J]. Progress in Chemistry, 2022, 34(4): 801-814.
[6] Shuangyu Zhang, Yunxuan Hu, Cheng Li, Xinhua Xu. Effect of Microbial Iron Redox on Aqueous Arsenic and Antimony Removal [J]. Progress in Chemistry, 2022, 34(4): 870-883.
[7] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[8] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[9] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[10] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[11] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[12] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[13] Haodong Ji, Juanjuan Qi, Maosheng Zheng, Chenyuan Dang, Long Chen, Taobo Huang, Wen Liu. Application of Nanotechnology for Virus Inactivation in Water:Implications for Transmission-Blocking of the Novel Coronavirus SARS-CoV-2 [J]. Progress in Chemistry, 2022, 34(1): 207-226.
[14] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[15] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.