中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Synthesis of Functional Polymer Materials via Thiol-Ene/Yne Click Chemistry

Yang Zhenglong1,2*, Chen Qiuyun1, Zhou Dan1, Bu Yilong1   

  1. 1. School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 200092;
    2. Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Shanghai 200092, China
  • Received: Revised: Online: Published:
PDF ( 2774 ) Cited
Export

EndNote

Ris

BibTeX

Click chemistry has drawn considerable attention in less than a decade due to its unique advantages, such as simple reaction conditions, high reaction efficiency, high yield, easy post-treatment and high selectivity for the obtained products. Recently, as a new and efficient click reaction, thiol-ene/yne click chemistry has raised much interest and will probably be the main direction for development in click chemistry. On the other hand, synthesis of high-performance functional polymer materials is one of the hot topics of novel material research. In this review, we introduce the characteristics, advantages and reaction mechanism of thiol-ene/yne click chemistry. Research progresses of thiol-ene/yne click chemistry in functional polymer synthesis are highlighted, with focus on the synthetic route of linear, hyperbranched, cross-linked and other types of functional polymers via this method. The monomer features, product features and potential applications of different types of functional polymer materials synthesized by thiol-ene/yne click reaction are also discussed in detail. Furthermore, the problems in thiol-ene/yne click chemistry that still should be resolved are pointed out, and future applications are prospected. Contents
1 Introduction
2 Thiol-ene/yne click chemistry
2.1 Characteristics and advantages of thiol-ene/ yne click chemistry
2.2 Reaction mechanism of thiol-ene/yne click chemistry
3 Functional polymers synthesized by thiol- ene/yne click chemistry
3.1 Synthesis and application of linear polymers
3.2 Synthesis and application of hyper-branched polymers
3.3 Synthesis and application of cross-linked polymers
3.4 Synthesis and application of other type of polymers
4 Conclusions and outlook

CLC Number: 

[1] Zheng H Y, Li Y L, Zhou C J, Li Y J, Yang W L, Zhou W D, Zuo Z C, Liu H B. Chem. Eur. J., 2011, 17: 2160-2167
[2] Boulden J E, Cramer N B, Schreck K M, Couch C L, Bracho-Troconis C, Stansbury J W,Bowman C N. Dent. Mater. J., 2011, 27: 267-272
[3] White M A, Maliakal A, Turro N J, Koberstein J. Macromol. Rapid Commun., 2008, 29: 1544-1548
[4] Antoni P, Robb M J, Campos L, Montanez M, Hult A, Malmström E, Malkoch M, Hawker C J. Macromolecules, 2010, 43: 6625-6631
[5] 邱素艳(Qiu S Y),高森(Gao S),林振宇(Lin Z Y),陈国南(Chen G N). 化学进展(Progress in Chemistry), 2011, 23(4): 637-648
[6] 陈琳(Chen L),石乃恩(Shi N E),钱妍(Qian Y), 解令海(Xie L H),范曲立(Fan Q L),黄维(Huang W).化学进展(Progress in Chemistry), 2010, 22(2/3): 406-416
[7] Hoyle C E, Lee T Y, Roper T. J. Polym Sci Part A: Polym. Chem., 2004, 42: 5301-5338
[8] Fairbanks B D, Scott T F, Kloxin C J, Anseth K S, Bowman C N. Macromolecules, 2009, 42: 211-217
[9] Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40: 2004-2021
[10] Qin A, Jim C K W, Lu W, Lam J W Y, Häussler M, Dong Y, Sung H H Y, Williams I D, Wong G K L, Tang B Z. Macromolecules, 2007, 40: 2308-2317
[11] Cavalieri F, Postma A, Lee L, Caruso F. ACS Nano, 2009, 3: 234-240
[12] Britcher L, Barnes T J,Griesser H J, Prestidge C A. Langmuir,2008, 24: 7625-7627
[13] Zhou Y, Wang S X, Zhang K, Jiang X Y. Angew. Chem. Int. Ed., 2008, 47: 7454-7456
[14] Wang Q, ChanT R, Hilgraf R, FokinV V, Sharpless K B, Finn M G. J. Am. Chem. Soc., 2003, 125: 3192-3193
[15] Agard N J, Prescher J A, Bertozzi C R. J. Am. Chem. Soc., 2004, 126: 15046-15047
[16] Senyurt A F, Wei H, Hoyle C E, Piland S G, Gould T E. Macromolecules, 2007, 40: 4901-4909
[17] Kade M J, Burke D J, Hawker C J. J.Polym. Sci., Part A: Polym. Chem., 2010,48: 743-750
[18] Hoyle C E, Bowman C N. Angew. Chem. Int. Ed., 2010, 49: 1540-1573
[19] Reddy S K, Cramer N B, Bowman C N. Macromolecules,2006, 39: 3673-3680
[20] Claudino M, Johansson M, Jonsson M. Eur. Polym. J., 2010,46: 2321-2332
[21] Lowe A B, Harvison M A. Aust. J. Chem., 2010, 63: 1251-1266
[22] Chan J W, Hoyle C E, Lowe A B. J. Am. Chem. Soc., 2009, 131: 5751-5753
[23] Minozzi M, Monesi A, Nanni D,Spagnolo P, Marchetti N, Massi A. J. Org. Chem., 2011, 76: 450-459
[24] Park H Y, KloxinC J, Scott T F, Bowman C N. Macromolecules, 2010, 43: 10188-10190
[25] Ma J, Cheng C, Sun G R, Wooley K L. Macromolecules, 2008, 41: 9080-9089
[26] Li G L, Wan D, Neoh K G, Kang E T. Macromolecules, 2010, 43: 10275-10282
[27] Li G L, Xu L Q, Tang X Z, Neoh K G, Kang E T. Macromolecules, 2010, 43: 5797-5803
[28] Chen G J, Amajjahe S, Stenzel M H. Chem.Commun., 2009, 1198-1200
[29] Diehl C, Schlaad H. Macromol. Biosci., 2009, 9: 157-161
[30] Lluch C, Ronda J C, Galià M, Lligadas G, Cádiz V. Biomacromolecules, 2010, 11: 1646-1653
[31] Jonkheijm P, Weinrich D, Köhn M, Engelkamp H, Christianen P C M, Kuhlmann J, Maan J C, Nüsse D, Schroeder H, Wacker R, Breinbauer R, Niemeyer C M, Waldmann H. Angew. Chem. Int. Ed., 2008, 47: 4421-4424
[32] Khire V, Lee T, Bowman C N. Macromolecules, 2008, 41: 7440-7447
[33] Khire V S, Benoit D S W, Anseth K S, Bowman C N. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 7207-7239
[34] Liu J Z, Lam J W Y, Jim C K W, Ng J C Y, Shi J B, Su H M, Yeung K F, HongY N, Faisal M, Yu Y, Wong K S,Tang B Z. Macromolecules, 2011, 44: 68-79
[35] Temel G, Karaca N, Arsu N. J.Polym. Sci. Part A: Polym. Chem., 2010, 48: 5306-5312
[36] 袁伟忠(Yuan W Z),张锦春(Zhang J C),魏静仁(Wei J R).化学进展(Progress in Chemistry), 2011, 23(4): 760-771
[37] Yu B, Chan J W, Hoyle C E, Lowe R B.J.Polym. Sci. Part A: Polym. Chem., 2009, 47: 3544-3557
[38] Killops K L, Campos L M, Hawker C J. J. Am. Chem. Soc., 2008, 130: 5062-5064
[39] Montaez M I, Campo L M, Antoni P, Maria I. Hed Y, Walter M V, KrulB T, Khan A, Hult A, Hawker C J, Malkoch M. Macromolecules, 2010, 43: 6004-6013
[40] Ortiz R A, Flores R V G, Valdéz A E G, Duarte M L B. Prog. Org. Coat., 2010, 69: 463-469
[41] Chen G, Kumar J, Gregory A, Stenzel M H. Chem. Commun., 2009, 6291-6293
[42] Liu W, Dong C M. Macromolecules, 2010, 43: 8447-8455
[43] Konkolewicz D, Gray-Weale A, Perrier S. J. Am. Chem. Soc., 2009, 131: 18075-18077
[44] Ortiz R A, Martinez A Y R, Valdez A E G, Duarte M L B. Carbohydr. Polym., 2010, 82: 822-828
[45] Chen Z G, Chisholm B J, Patani R,Wu J F, Fernando S, Jogodzinski K,Webster D C. J. Coat. Technol. Res., 2010, 7: 603-613
[46] Rodriguez E D, Luo X F, Mather P T. ACS Appl. Mater. Interfaces, 2011, 3: 152-161
[47] akmakcl E, Mülazim Y, Kahraman M V, Apohan N K.React. Funct. Polym., 2011,71: 36-41
[48] DeForest C A, Sims E A, Anseth K S. Chem. Mater., 2010, 22: 4783-4790
[49] Lundberg P, Bruin A, Klijnstra J W, Hult A, Nyström A M, ohansson M, Malkoch M, Hult A. ACS Appl. Mater. Interfaces, 2010, 2: 903-912
[50] Shin J, Matsushima H, Comer C M, Bowman C N, Hoyle C E. Chem. Mater., 2010, 22: 2616-2625
[51] Chan J W,Shin J, Hoyle C E, Bowman C N, Lowe A B. Macromolecules, 2010, 43: 4937-4942
[52] Stanford M J, Pflughaupt R L, Dove A P. Macromolecules, 2010, 43: 6538-6541
[53] Kim D, Kim E, Lee J, Hong S, Sung W, Lim N, Park C G, Kim K. J. Am. Chem. Soc., 2010, 132: 9908-9919
[54] Dong Z M, Liu X H, Liu H W, Li Y S. Macromolecules, 2010, 43: 7985-7992
[55] Wang G W, Fan X S, Huang J L. J. Polym. Sci., Part A: Polym. Chem., 2010, 48: 3797-3806
[56] Yu X F, Zhong S, Li X P, Tu Y F,Yang S G, Horn R M V, Ni C Y, Pochan D J, Quirk R P, Wesdemiotis C, Zhang W B, Cheng S Z D. J. Am. Chem. Soc., 2010, 132: 16741-16744
[57] Prasath R A, Gokmen M T, Espeel P, Prez F E D. Polym. Chem., 2010, 1: 685-692
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[7] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[8] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[9] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[10] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[11] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[12] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[13] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[14] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[15] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.