中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

Recent Advances in Oxidative Deoximation

Zhang Guofu, Wen Xin, Wang Yong, Mo Weimin*, Ding Chengrong*   

  1. College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, China
  • Received: Revised: Online: Published:
PDF ( 1580 ) Cited
Export

EndNote

Ris

BibTeX

Oximes are extensively used as preferred derivatives for protection, purification and characterization of carbonyl compounds as well as a valid alternative pathway to prepare carbonyl compounds. Therefore, there has been a continued interest in the development of procedures like hydrolysis, reduction, oxidation for the effective regeneration of carbonyl compounds. Among them, the oxidative deoximation has attracted much attention currently. In this paper, the recent progress in oxidative deoximation, especially in utilizing hydrogen peroxide and oxygen as the green oxidants, are discussed in detail. Contents
1 Introduction
2 Deoximation with traditional oxidizing agents
2.1 Deoximation using metal salts
2.2 Deoximation using nonmetallic oxidants
3 Deoximation with H2O2
4 Deoximation with O2
5 Conclusions and Outlook

CLC Number: 

[1] Corey E J, Hopkins P B, Kim S, Yoo S E, Nambiar K P, Falck J R. J. Am. Chem. Soc., 1979, 101: 7131-7134
[2] (a) Hasi H B, Susie A G, Heider R L. J. Org. Chem., 1950, 15: 8-14 (b) Corma A, Serna P, García H. J. Am. Chem. Soc., 2007, 129: 6358-6359 (c) Serna P, López-Haro M, Calvino J J, Corma A. J. Catal., 2009, 263: 328-334
[3] Williams D G. The Chemistry of Essential Oils: An Introduction for Aromatherapists, Beauticians, Retailers and Students. Dorset: Micelles Press, 2008
[4] (a) Hershberg E B. J. Org. Chem., 1948, 13: 542-546 (b) DePuy C H, Ponder B W. J. Am. Chem. Soc., 1959, 81: 4629-4631(c) Cava M P, Litle R L, Napier D R. J. Am. Chem. Soc., 1958, 80: 2257-2260
[5] (a) Massey E H, Kitchell B, Martin L D, Gerzon K, Murphy H W. Tetrahedron Lett., 1970, 11: 157-160 (b) Curran D P, Brill J F, Rakiewicz D M. J. Org. Chem., 1984, 49: 1654-1656 (c) Wang S S, Sukenik C N. J. Org. Chem., 1985, 50: 5448-5450
[6] 李伟(Li W), 王佳兰(Wang J L), 张贵生(Zhang G S), 李志鸿(Li Z H), 蔡昆(Cai K). 有机化学(Chinese Journal of Organic Chemistry), 1993, 13: 545-548
[7] Kamal A, Rao M V, Meshram H M. J. Chem. Soc. Perkin Trans. 1, 1991, 2056-2057
[8] (a) 赵文超(Zhao W C), 沙耀武(Sha Y W). 有机化学(Chinese Journal of Organic Chemistry), 1996, 16: 121-132 (b) Corsaro A, Chiacchio U, Pistara V. Synthesis, 2001, 1903-1931
[9] Firouzabadi H, Iranpoor N, Amani K. Synth. Commun., 2004, 34: 3587-3593
[10] Ghorbani-Choghamarani A, Shiri L, Zeinivand J. Bull. Korean Chem. Soc., 2008, 29: 2496-2498
[11] Heravi M M, Ajami D, Mohajerani B, Tabar-Hydar K, Ghassemzadeh M. Synth. Commun., 2002, 32: 3325-3330
[12] Demir A S, Tanyeli C, Altinel E. Tetrahedron Lett., 1997, 38: 7267-7270
[13] Shaabani A, Naderi S, Rahmati A, Badri Z, Darvishi M, Lee D G. Synthesis, 2005, 3023-3025
[14] Chrisman W, Blankinship M J, Taylor B, Harris C E. Tetrahedron Lett., 1997, 38: 5427-5428
[15] De S K. Synth. Commun., 2004, 34: 2289-2294
[16] Barhate N B, Gajare A S, Wakharkar R D, Sudalai A. Tetrahedron Lett., 1997, 38: 653-656
[17] Deshpande S S, Sonavane S U, Jayaram R V. Catal. Commun., 2008, 9: 639-644
[18] Bose D S, Srinivas P. Synth. Commun., 1997, 27: 3835-3838
[19] Hajipour A R, Mallakpour S E, Baltork M, Adibi H. Synth. Commun., 2001, 31: 3401-3409
[20] Bose D S, Srinivas P. Synlett, 1998, 977-978
[21] Krishnaveni N S, Surendra K, Nageswar Y V D, Rao K R. Synthesis, 2003, 1968-1970
[22] Chaudhari S S, Akamanchi K G. Tetrahedron Lett., 1998, 39: 3209-3212
[23] Narender M, Reddy M S, Krishnaveni N S, Surendra K, Nageswar Y V D, Rao K R. Synth. Commun., 2006, 36: 1463-1475
[24] Yadav J S, Sasmal P K, Chand P K. Synth. Commun., 1999, 29: 3667-3671
[25] Gogoi P, Hazarika P, Konwar D. J. Org. Chem., 2005, 70: 1934-1936
[26] Chandrasekhar S, Gopalaiah K. Tetrahedron Lett., 2002, 43: 4023-4024
[27] Bandgar B P, Makone S S. Org. Prep. Proced. Int., 2000, 32: 391-394
[28] Reddy M S, Narender M, Rao K R. Synth. Commun., 2004, 34: 3875-3881
[29] Khazaei A, Rostamitt A. Org. Prep. Proced. Int., 2006, 38: 484-490
[30] Khazaei A, Vaghei R G. Tetrahedron Lett., 2002, 43: 3073-3074
[31] Khazaei A, Manesh A A, Rostami A. J. Chem. Res., 2004, 695-697
[32] Khazaei A, Vaghei R G, Tajbakhsh M. Tetrahedron Lett., 2001, 42: 5099-5100
[33] Shaabani A, Rahmati A, Naderi S. Synth. Commun., 2007, 37: 4035-4042
[34] Vaghei R G, Khazaei A. Phosphorus, Sulfur, Silicon Relat. Elem., 2004, 179: 55-59
[35] Kim B R, Lee H G, Kim E J, Lee S G, Yoon Y J. J. Org. Chem., 2010, 75: 484-486
[36] De S K. Synth. Commun., 2004, 34: 4409-4415
[37] Ganguly N C, Barik S K. Synthesis, 2008, 425-428
[38] Keseru G M, Balogh G T, Karancsi T. Bioorg. Med. Chem. Lett., 2000, 10: 1775-1777
[39] Jain N, Kumar A, Chauhan S M S. Tetrahedron Lett., 2005, 46: 2599-2602
[40] Ren Q G, Zhou X T, Ji H B. J. Porphyrins Phthalocyanines, 2011, 15: 215-216
[41] Ballistreri F P, Chiacchio U, Rescifina A, Tomaselli G, Toscano R M. Molecules, 2008, 13: 1230-1237
[42] Ezabadi A, Najafi G R, Hashemi M M. Chin. Chem. Lett., 2007, 18: 1451-1454
[43] Ganguly N C, Nayek S, Barik S K. Synth. Commun., 2009, 39: 4053-4061
[44] Blay G, Benach E, Fernández I, Galletero S, Pedro J R, Ruiz R. Synthesis, 2000, 403-406
[45] Hashemi M M, Beni Y A. Synth. Commun., 2001, 31: 295-299
[46] Hashemi M M, Akhbari M, Karimi-Jaberi Z. Lett. Org. Chem., 2006, 3: 121-122
[47] Yang Y, Zhang D, Wu L Z, Chen B, Zhang L P, Tung C H. J. Org. Chem., 2004, 69: 4788-4791
[48] 张栋(Zhang D), 吴骊珠(Wu L Z), 张丽萍(Zhang L P), 佟振合(Tong Z H). 感光科学与光化学(Photographic Science and Photochemistry), 2003, 21: 405-411
[49] Grirrane A, Corma A, Garcia H. J. Catal., 2009, 268: 350-355
[50] (a) Sharma V B, Jain S L, Sain B. Tetrahedron Lett., 2003, 44: 383-386 (b) Perollier C, Sorokin A B. Chem. Commun., 2002, 1548-1549
[51] Shaabani A, Farhangi E. Appl. Catal. A, 2009, 371: 148-152
[52] Zhou X T, Yuan Q L, Ji H B. Tetrahedron Lett., 2010, 51: 613-617
[53] Zhang G F, Wen X, Wang Y, Mo W M, Ding C R. J. Org. Chem., 2011, 76: 4665-4668
[54] (a) Liu R H, Liang X M, Dong C Y, Hu X Q. J. Am. Chem. Soc., 2004, 126: 4112-4113 (b) Wang N W, Liu R H, Chen J P, Liang X M. Chem. Commun., 2005, 5322-5324 (c) Liang X M, Fu D M, Liu R H, Zhang Q, Zhang T Y, Hu X Q. Angew. Chem. Int. Ed., 2005, 44: 5520-5523 (d) Zhang G F, Liu R H, Xu Q, Ma L X, Liang X M. Adv. Synth. Catal., 2006, 348: 862-866 (e) Peng Y R, Fu D M, Liu R H, Zhang F F, Xue X Y, Xu Q, Liang X M. Appl. Catal. B: Environ., 2008, 79: 163-170 (f) Wang X L, Liu R H, Jin Y, Liang X M. Chem. Eur. J., 2008, 14: 2679-2685 (g) Peng Y R, Fu D M, Liu R H, Zhang F F, Liang X M. Chemosphere, 2008, 71: 990-997 (h) Fu D M, Peng Y R, Liu R H, Zhang F F, Liang X M. Chemosphere, 2009, 75: 701-706
[1] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[2] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[3] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Wenyan Gao, Xuan Zhao, Xilin Zhou, Yaran Song, Qingrui Zhang. Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review [J]. Progress in Chemistry, 2022, 34(5): 1191-1202.
[6] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[7] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[8] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[9] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[10] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[11] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[12] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[13] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[14] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[15] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
Viewed
Full text


Abstract

Recent Advances in Oxidative Deoximation