中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Synthesis and Application of Hierarchically Structured Nano-Alumina

Tang Rui, Li Ping*   

  1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received: Revised: Online: Published:
PDF ( 1364 ) Cited
Export

EndNote

Ris

BibTeX

Nano-alumina with hierarchical structure has recently attracted extensive attention because of its synergism and coupling effect on micro-nano scales. In the paper, the hierarchical structures of nano-alumina reported in the literature have been divided into four main types including hollow sphere, core-shell, cluster, and array. The progress of their synthesis techniques has been reviewed. Several factors affecting the morphology of nano-alumina particles with hierarchical structure in the course of synthesis have been discussed. It has been recognized in the literature that a majority of effects could be altered if changing the synthesis environment, indicating the complexity of hierarchical structure formation. Nevertheless, there is a general rule for the effect of pH in the hydrothermal process on the morphology of the secondary structure of nano-alumina. Acid condition favors the formation of one dimensional nano-alumina while basic condition helps to form two dimensional nano-alumina. The formation mechanism of the hierarchically structured nano-alumina has briefly been explained. Additionally, the effect of hierarchical morphology on the thermal stability of alumina has been depicted using available results presented in the literature. Some examples of the material applied to the areas of luminescence, adsorption and catalysis have been given in the paper. As viewed from the combination of the rational synthesis and the practical applications of the material with specific properties, the prospects of the research on the hierarchically structured nano-alumina have been outlined in the end of the paper. Contents
1 Introduction
2 Synthesis of hierarchically structured nano-alumina with different morphologies
2.1 Hollow structure
2.2 Core-shell structure
2.3 Cluster structure
2.4 Array structure
2.5 Other structures
3 Synthesis factors and structure formation mechanism
3.1 Factors in morphology forming
3.2 Formation mechanism of hierarchical structure
4 Influence of hierarchical structure on material thermostability
5 Application of hierarchically structured nano-alumina
6 Prospects

CLC Number: 

[1] Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Nature, 2000, 404: 59-61
[2] Buhro W E, Colvin V L. Nat. Mater., 2003, 2: 138-139
[3] Lu C H, Qi L M, Yang J H, Wang X Y, Zhang D Y, Xie J L, Ma J M. Adv. Mater., 2005, 17: 2562-2567
[4] Wang Z L, Song J H. Science, 2006, 312: 242-246
[5] Huang J Y, Wang X D, Wang Z L. Nano Lett., 2006, 6: 2325-2331
[6] Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L, Zhu D B. Adv. Mater., 2002, 14: 1857-1860
[7] Nudelman F, Gotliv B A, Addadi L, Weiner S. J. Struct. Biol., 2006, 153: 176-187
[8] Trueba M, Trasatti S P. Eur. J. Inorg. Chem., 2005, 17: 3393-3403
[9] Zhang Z R, Hicks R W, Pauly T R, Pinnavaia T J. J. Am. Chem. Soc., 2002, 124: 1592-1593
[10] Hu J S, Zhong L S, Song W G, Wang L J. Adv. Mater., 2008, 20: 2977-2982
[11] Yu P, Zhang X, Wang D L, Wang L, Ma Y W. Cryst. Growth Des., 2009, 9: 528-533
[12] Wang X, Zhuang J, Peng Q, Li Y D. Nature, 2005, 437: 121-124
[13] Zhang D F, Zhang H, Guo L, Zheng K, Han X D, Zhang Z. J. Mater. Chem., 2009, 19: 5220-5225
[14] Yu J G, Yu H G, Guo H T, Li M, Mann S. Small, 2008, 4: 87-91
[15] Yu J G, Li Q L, Fan J J, Cheng B. Chem. Commun., 2011, 9161-9163
[16] Burda C, Chen X B, Narayanan R, Ei-Sayed M A. Chem. Rev., 2005, 105: 1025-1102
[17] 张东凤(Zhang D F), 牛丽亚(Niu Y L), 郭林(Guo L). 物理化学学报(Acta Phys. Chim. Sin. ), 2010, 26: 2865-2876
[18] Dickerson M B, Sandhage K H, Naik R R. Chem. Rev., 2008, 108: 4935-4978
[19] Yang X Y, Li Y, Lemaire A, Yu J G, Su B L. Pure Appl. Chem., 2009, 81: 2265-2307
[20] Zhang M, Zhang R, Xi G C, Liu Y, Qian Y T. J. Nanosci. Nanotechnol., 2006, 6: 1437-1440
[21] Hu Y, Jiang X Q, Ding Y, Chen Q, Yang C Z. Adv. Mater., 2004, 16: 933-937
[22] Yin Y D, Rioux R M, Erdonmez C K. Science, 2004, 304: 711-714
[23] Liu Q, Liu H J, Han M, Zhu J M, Liang Y Y, Xu Z, Song Y. Adv. Mater., 2005, 17: 1995-1999
[24] Xu H L, Wang W Z. Angew. Chem. Int. Ed., 2007, 46: 1489-1492
[25] Buchold D H, Feldman C. Nano Lett., 2007, 7: 3489-3492
[26] 冯莹(Feng Y), 仉丽(Zhang L), 古国华(Gu G H), 胡正水(Hu Z S). 稀有金属材料与工程(Rare. Metal Mat. Eng.), 2007, 36: 134-136
[27] Wu X Y, Wang D B, Hu Z S, Gu G H. Mater. Chem. Phys., 2008, 109: 560-564
[28] Cai W Q, Yu J G, Cheng B, Su B L, Jaroniec M. J. Phys. Chem. C, 2009, 113: 14739-14746
[29] Cai W Q, Yu J G, Mann S. Micropro. Mesopro. Mat., 2009, 122: 42-47
[30] Cai W Q, Yu J G, Gu S H, Jaroniec M. Cryst. Growth Des., 2010, 10: 3977-3982
[31] Xiu F, Li W. Mater. Lett., 2010, 64: 1858-1860
[32] Zhou J B, Yang S L, Yu J G, Shu Z. J. Hazard. Mater., 2011, 192: 1114-1121
[33] Lee W R, Kim M G, Choi J R, Park J, Ko S J, Oh S J, Cheon J. J. Am. Chem. Soc., 2005, 127: 16090-16097
[34] 吕勇(Lv Y), 陆文聪(Lu W C), 张良苗(Zhang L M), 岳宝华(Yue B H), 尚兴付(Shang X F), 倪纪鹏(Ni J P). 无机化学学报(Acta Phys. Chim. Sin.), 2009, 25: 1391-1396
[35] Zhang L M, Lu W C, Yan L M, Feng Y L, Bao X H, Ni J P, Shang X F, Lv Y. Micropro. Mesopro. Mat., 2009, 119: 208-216
[36] Zhang L M, Lu W C, Cui R R, Shen S S. Mater. Res. Bull., 2010, 45: 429-436
[37] 吴秀勇(Wu X Y), 胡正水(Hu Z S). 无机化学学报(Chinese J. Inorg. Chem.), 2008, 24: 760-764
[38] Wang Y Q, Wang G Z, Wang H Q, Cai W P, Liang C H, Zhang L D. Nanotechnol., 2009, 20: art. no. 155604
[39] Kou H M, Wang J, Pan Y B, Guo J K. J. Am. Ceram. Soc., 2005, 88: 1615-1618
[40] Kou H M, Pan Y B, Guo J K. Ceram. Int., 2007, 33: 305-308
[41] Chen X Y, Huh H S, Lee S W. Nanotechnol., 2007, 18: art. no. 285608
[42] Liu Q, Wang A Q, Wang X D, Zhang T. Micropro. Mesopro. Mat., 2007, 100: 35-44
[43] Cai W Q, Yu J G, Jaroniec M. J. Mater. Chem., 2010, 20: 4587-4594
[44] 汤睿(Tang R), 张昭(Zhang Z), 杨晓娇(Yang X J), 王寅(Wang Y). 无机化学学报(Chinese J. Inorg. Chem. ), 2011, 27: 251-258
[45] Kim S W, Iwamoto S, Inoue M. Top Catal., 2010, 53: 535-542
[46] Kim S W, Iwamoto S, Inoue M. J. Porous. Mater., 2010, 17: 377-385
[47] Zhang J, Liu S J, Lin J, Song H S, Luo J J, Elssfah E M, Ammar E, Huang Y, Ding X X, Gao J M, Qi S R, Tang C C. J. Phys. Chem. B, 2006, 110: 14249-14252
[48] Ma M G, Zhu J F. Mater. Lett., 2009, 63: 881-883
[49] Li G C, Liu Y Q, Liu D, Liu L H, Liu C G. Mater. Res. Bull., 2010, 45: 1487-1491
[50] Zhang J, Wei S Y, Lin J, Luo J J, Liu S J, Song H S, Elawad E, Ding X X, Gao J M, Qi S R, Tang C C. J. Phys. Chem. B, 2006, 110: 21680-21683
[51] Feng Y L, Lu W C, Zhang L M, Bao X H, Yue B H, Lv Y, Shang X F. Cryst. Growth Des., 2008, 8: 1426-1429
[52] Liu Y, Li X M, Xu Z K, Hu Z S. J. Phys. Chem. Solids, 2010, 71: 206-209
[53] Liu Y, Ma D, Han X W, Bao X H, Frandsn W, Wang D, Su D S. Mater. Lett., 2008, 62: 1297-1301
[54] Kim T, Li H B, Lian J B, Jin H H, Ma J M, Duan X C, Yao G, Zheng W J. Cryst. Res. Technol., 2010, 45: 767-770
[55] Kim T, Lian J B, Ma J M, Duang X C, Zheng W J. Cryst. Growth Des., 2010, 10: 2928-2933
[56] Liang H, Liu L, Yang Z J, Yang Y Z, Cryst. Res. Technol., 2010, 45: 195-198
[57] Wei S Y, Zhang J, Elsanousi A, Lin J, Shi F J, Liu S J, Ding X X, Gao J M, Qi S R, Tang C C. Nanotechnol., 2007, 18: art. no. 255605
[58] Zhang L, Zhu Y J. J. Phys. Chem. C, 2008, 112: 16764-16768
[59] Yu X X, Yu J G, Cheng B, Jaroniec M. J. Phys. Chem. C, 2009, 113: 17525-17535
[60] Yuan Z H, Huang H, Fan S S. Adv. Mater., 2002, 14: 303-306
[61] Xiao Z L, Han C Y, Welp U, Wang H H, Kwok W K, Willing G A, Hiller J M, Cook R E, Miller D J, Crabtree G W. Nano Lett., 2002, 2: 1293-1297
[62] Mei Y F, Wu X L, Shao X F, Huang G S, Siu G G. Phys. Lett. A, 2003, 309: 109-113
[63] Tian Y T, Meng G W, Gao T, Sun S H, Xie T, Peng X S, Ye C H, Zhang L D. Nanotechnol., 2004, 15: 189-191
[64] Zhang L, Cheng B, Shi W S, Samulski E T. J. Mater. Chem., 2005, 15: 4889-4893
[65] Li Y, Yang X Y, Tian G, Vantomme A, Yu J G, Tendeloo G, Su B L. Chem. Mater., 2010, 22: 3251-3258
[66] Yu J G, Su Y R, Cheng B. Adv. Funct. Mater., 2007, 17: 1984-1990
[67] Yu J G, Zhang L J, Cheng B, Su Y R. J. Phys. Chem. C, 2007, 111: 10582-10589
[68] Lemaire A, Su B L. Langmuir, 2010, 26: 17603-17616
[69] Lemaire A, Su B L. Micropro. Mesopro. Mat., 2011, 142: 70-81
[70] Lemaire A, Wang Q Y, Wei Y X, Liu Z M, Su B L. J. Colloid Interf. Sci., 2011, 363: 511-520
[71] Yang X Y, Leonard A, Lemaire A, Tian G, Su B L. Chem. Commun., 2011, 2763-2786
[72] Kuang X, Carotenuto G, Nicolais L. Appl. Compos. Mater., 1995, 2: 245-255
[73] Kaya C, He J Y, Gu X, Butler E G. Micropro. Mesopro. Mat., 2002, 54: 37-49
[74] Chen X Y, Lee S W. Chem. Phys. Lett., 2007, 438: 279-284
[75] Chen X Y, Zhang Z J, Li X L, Lee S W. Solid. State. Comm., 2008, 145: 368-373
[76] He T B, Xiang L, Zhu S L. Cryst. Eng. Comm., 2009, 11: 1338-1342
[77] 陆光伟(Lu G W), 杨琪(Yang Q), 邓意达(Deng Y D), 胡文彬(Hu W B). 无机材料学报(J. Inorg. Mater. ). 2009, 24: 463-468
[78] Deng Y D, Yang Q, Lu G W, Deng Y D. Ceram. Int., 2010, 36: 1773-1777
[79] Yang Q. Inorg. Mater., 2010, 46: 953-958
[80] Tang B, Ge J C, Zhou L H, Wang G L, Niu J Y, Shi Z Q, Dong Y B. Eur. J. Inorg. Chem., 2005: 4366-4369
[81] Zhao Y Y, Frost R L, Martens W N, Zhu H Y. Langmuir, 2007, 23: 9850-9859
[82] Li Y Y, Liu J P, Jia Z J. Mater. Lett., 2006, 60: 3586-3590
[83] Hou H W, Xie Y, Yang Q, Guo Q, Tan C. Nanotechnol., 2005, 16: 741-745
[84] Mathieu Y, Lebeau B, Valtchev V. Langmuir, 2007, 23: 9435-9442
[85] Bokhimi X, Valente J S, Pedraza F. J. Solid. State. Chem., 2002, 166: 182-190
[86] Gan Z H, Ning G L, Lin Y, Cong Y. Mater. Lett., 2007, 61: 3758-3761
[87] Ma M G, Zhu Y J, Xu Z L. Mater. Lett., 2007, 61: 1812-1815
[88] Ma M G, Zhu Y J, Cheng G F, Huang Y H. J. Mater. Sci. Technol., 2008, 24: 637-640
[89] Arami H, Mazloumi M, Khalifehzadeh R, Sadrnezhaad S K. J. Alloy. Compd., 2008, 461: 551-554
[90] Mekasuwandumrong O, Tantichuwet P, Chaisuk C, Praserthdam P. Mater. Chem. Phys., 2008, 107: 208-214
[91] 李传润(Li C R), 冯乙巳(Feng Y S), 杨庆华(Yang Q H), 化学进展(Prog. Chem.), 2006, 18: 1482-1488
[92] 杨泠(Yang L), 冯炫(Feng X), 刘应亮(Liu Y L), 化学进展(Prog. Chem.), 2010, 22: 32-43
[93] Zhang Z R, Hicks R W, Pauly T R, Pinnavaia T J. J. Am. Chem. Soc., 2002, 124: 1592-1593
[94] Shen S C, Ng W K, Zhong Z Y, Dong Y C, Chia L, Tan R B. J. Am. Ceram. Soc., 2009, 92: 1311-1316
[95] Naskar M K. J. Am. Ceram. Soc., 2009, 92: 2392-2395
[96] Zhu Z F, Sun H J, Liu H, Yang D. Mater. Sci., 2010, 45: 46-50
[97] Zhu Z F, Sun H J, Liu H, Yang D. Chem. Eng. J., 2009, 155: 925-930
[98] Ying Z S, Gevert B, Otterstedt J E, Sterte J. Appl. Catal. A-Gen., 1997, 153: 69-82
[99] Martinez A, Prieto G, Rollan J. J. Catal., 2009, 263: 292-305
[100] Lu C L, Lv J G, Xu L, Guo X F, Hou W H, Hu Y, Huang H. Nanotechnol., 2009, 20: art. no. 215604
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[4] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[5] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[8] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[9] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[10] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[11] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[12] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[13] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[14] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[15] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.