中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Application of Halloysite Nanotubes

Ma Zhi*, Wang Jinye, Gao Xiang, Ding Tong, Qin Yongning   

  1. Department of Catalysis Science and Technology, College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received: Revised: Online: Published:
PDF ( 3133 ) Cited
Export

EndNote

Ris

BibTeX

Halloysite nano-particles have recently become the subject of research attention as a new type of material.Halloysite nanotubes (HNTs) are readily obtainable and are much cheaper than other nano-particles such as carbon nanotubes(CNTs). More importantly, the unique crystal structure of HNTs not only resembles that of CNTs in terms of aspect ratio,but also has a highly ordered structure with aluminol groups bound in the inner surface and silanol groups on the external surface. Consequently HNTs not only have potential as additive for enhancing the mechanical performance of polymers but also make them attractive candidates for a variety of potential applications, including molecular adsorption, molecular encapsulation, storage and transport, catalyst or catalyst support in chemical reactions.This review summarizes the extensive but scattered literature on halloysite nanotubes’ application, from its crystal structure, chemical and characteristic of morphological, to its adsorption, transport and catalysis reactivity, involving the various valuable prospects. Finally, the future trends and prospects in the development of application research of HNTs are highlighted. Contents
1 Introduction
2 Chemical composition and crystalline structure of halloysite nanotubes
3 Adsorption,storage and transport properties of HNTs
3.1 Transport properties of hydrogen-bonding liquids such as water, methanol and ethanol
3.2 Adsorption storage properties of fuel gas CH4, H2 on HNTs
3.3 HNTs as the support for drugs or bioactive molecules
3.4 HNTs as sorbents for contaminants and pollutants
4 HNTs used as catalyst or catalyst support
4.1 Acid catalyst
4.2 Enzymatic carrier
4.3 The support of the catalyst metal complexes
5 Some other properties of HNTs
6 Outlook

CLC Number: 

[1] Du M L, Guo B C, Jia D M. Society of Chemical Industry, 2010, 59: 574-582
[2] Dieckmann G R, Dalton A B, Johnson P A, Razal J, Chen J, Giordano G M, Munoz E, Musselman I H, Baughman R H, Draper R K. J. Am. Chem. Soc., 2003, 125: 1770-1777
[3] Shi Kam N W, O'Connell M, Wisdom J A, Dai H. Proc Natl. Acad. Sci. USA, 2005, 102: 11600-11605
[4] Kam N W, Liu Z, Dai H. J. Am. Chem. Soc., 2005, 127: 12492-12493
[5] Feazell R P, Nakayama-Ratchford N, Dai H, Lippard S J. J. Am. Chem. Soc., 2007, 129: 8438-8439
[6] De Heer W H. Curr. Opin. Solid State Mater. Sci., 1999, 4: 355-359
[7] Zhou W W, Han Z Y, Wang J Y, Zhang Y, Jin Z, Sun X, Zhang Y W, Yan C H, Li Y. Nano Lett., 2006, 6: 2987-2990
[8] Liu Z F, Jiao L Y, Yao Y G, Xian X J, Zhang J. Adv. Mater., 2010, 22: 2285-2310
[9] Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B. Clays Clay Miner., 2005, 40: 383-426
[10] Frost R L, Shurvell H F. Clays Clay Miner., 1997, 45: 68-72
[11] 杜明亮(Du M L). 华南理工大学博士论文(Doctoral Dissertation of South China University of Technology), 2007
[12] Klinke C, Bonard J M, Kern K. Phys. ReV. B., 2005, 71: art. no. 035403
[13] Robertson D H, Brenner D W, Mintmire J W. Phys. Rev. B, 1992, 45: 12592-12595
[14] Gardolinski J E, Martins Filho H P, Wypych F. Quim. Nova., 2003, 26: 30-35
[15] Joussein E, Petit S, Delvaux B. Appl. Clay Sci., 2007, 35: 17-24
[16] Theng B K G, Russell M, Churchman G J, Parfitt R L. Clays Clay Miner., 1982, 30: 143-149
[17] Berthier P. Ann. Chim. Phys., 1826, 32: 332-335
[18] Pauling L. Proc. Natl. Acad. Sci. USA, 1930, 16: 578-582
[19] Harris P J F. Carbon Nanotubes and Related Structures: Newmaterials for the 21st Century. Cambridge UK: Cambridge University Press, 1999
[20] Bates T F, Sand L B, Mink J F. Science, 1950, 111: 512-513
[21] Bates T F, Hildebrand F A, Swineford A. Am. Mineral., 1950, 35: 463-484
[22] Whittaker E J W. Acta Crystallogr., 1956, 9: 855-862
[23] Nakagaki S, Wypych F. J. Colloid Interf. Sci., 2007, 315: 142-157
[24] Hong H L, Mi J X. Mineral. Mag., 2006, 70: 257-264
[25] Perruchot A, Dupuis C, Brouard E, Nicaise D, Ertus R. Clays Clay Miner., 1997, 32: 271-287
[26] Churchman G J, Theng B K G. Appl. Clay Sci., 2002, 20: 153-156
[27] Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B. Clays Clay Miner., 2005, 40: 383-426
[28] Veerabadran N G, Price R R, Lvov Y M. Nano Lett., 2007, 2: 115-120
[29] Kautz C Q, Ryan P C. Clays Clay Miner., 2003, 51: 252-263
[30] Hillier S, Ryan P C. Clays Clay Miner., 2002, 37: 487-496
[31] Guimaraes L, Enyashin A N, Seifert G, Duarte H A. J. Phys. Chem. C, 2010, 114: 11358-11363
[32] Guimaraes L, Enyashin A N, Frenzel J, Heine T, Duarte H A, Seifert G. ACS Nano, 2007, 1: 362-368
[33] Kohler T, Frauenheim T, Hajnal Z, Seifert G. Phys. Rev. B: Condens. Matter., 2004, 69: art. no. 193403
[34] Piperno S, Kaplan-Ashiri I, Cohen S R, Popovitz-Biro R, Wagner H D, Tenne R, Foresti E, Lesci I G, Roveri N. Adv. Funct. Mater., 2007, 17: 3332-3338
[35] Rooj S, Das A, Thakur V, Mahaling R N, Bhowmick A K, Heinrich G. Mater. Des., 2010, 31: 2151-2156
[36] Guimaraes L, Enyashin A N, Seifert G, Duarte H A. 11th International Conference on Advanceed Materials. Rio de Janeiro Brazil. September 20-25, 2009
[37] Zhao M F, Liu P. Microporous Mesoporous Mater., 2008, 112: 419-424
[38] Liu R C, Zhang B, Mei D D, Zhang H Q, Liu J D. Desalination, 2011, 268: 111-116
[39] Wang J H, Zhang X, Zhang B, Zhao Y F, Liu J D, Chen R F. Desalination, 2010, 259: 22-28
[40] Lu X C, Chuan X Y, Wang A P, Kang F Y. Acta Geol. Sinica Engl. Ed., 2006, 80: 278-284
[41] Kilislioglu A, Bilgin B. Radiochim. Acta, 2002, 90: 155-160
[42] Chmielowiec-Korzeniowska A, Tymczyna L, Skórska C, Sitkowska J, Cholewa G, Dutkiewicz J. Ann. Agric. Environ. Med., 2007, 14: 141-150
[43] Tymczyna L, Chmielowiec-Korzeniowska A, Drabik A, Skorska C, Sitkowska J, Cholewa G, Dutkiewicz J. Ann. Agric. Environ. Med., 2007, 14: 151-157
[44] Levis S R, Deasy P B. Int. J. Pharm., 2003, 253: 145-157
[45] Byrne R S, Deasy P B. J. Microencapsulation, 2005, 22: 423-437
[46] Aguzzi C, Cerezo P, Viseras C, Caramella C. Appl. Clay Sci., 2007, 36: 22-36
[47] Viseras M T, Aguzzi C, Cerezo P, Viseras C, Valenzuela C. Microporous Mesoporous Mater., 2008, 108: 112-116
[48] Shchukin D G, Lamaka S V, Yasakau K A, Zheludkevich M L, Möhwald H, Ferreira M G S. J. Phys. Chem. C, 2008, 112: 958-964
[49] Shchukin D G, Mohwald H. Adv. Funct. Mater., 2007, 17: 1451-1458
[50] Neuber U, Bender H. Acrylate Sealants. Industrial Report, Germany, 2004
[51] Zhang Y. Antiwear Composite Lubricating Greases for Machinery Parts. Industrial Report, China, 2004
[52] Baskaran S, Bolan N S, Rahman A, Tillman R W. NZJ. Agric. Res., 1996, 39: 297-310
[53] Theng B K G. On Measuring the Specific Surface Area of Clays and Soils by Adsorption of Para-Nitrophenol: Use and Limitations, in Clays Control the Environment. Proceedings of the 10th International Clay Conference, Adelaide, 1993. 304-310
[54] Ha S N, Lee H C. Cosmetic Composition for Preventing the Skin Aging and Whitening the Skin, Containing Natural Mixture Having Plentiful Inorganic Substances Including Selenium. Industrial Report, Korea Research Institute of Chemical Technology, South Korea, 2003
[55] Maubru M, Restle S, Perron B. Cosmetic Compositions Comprising A Methacrylic Acid Copolymer, Insoluble Mineral Particles and A Cationic or Amphoteric polymer. Industrial report, L’Oreal, France, 2004
[56] Dujardin E, Ebbesen T W, Hiura H, Tanigaki K. Science, 1994, 265(5180): 1850-1852
[57] Lvov Y M, Shchukin D G, Mohwald H, Price R R. ACS Nano, 2008, 2: 814-820
[58] Lvov Y M, Price R R. Halloysite Nanotubules: A Novel Substrate for the Controlled Delivery of Bioactive Molecules, in Bio-Inorganic Hybrid Nanomaterials. Wiley, 2008. Chap. 14, 454
[59] Veerabadran N G, Price R R, Lvov Y M. Nano Lett., 2007, 2: 115-120
[60] Byrne R S, Deasy P B. J. Microencapsulation, 2005, 22: 423-437
[61] Smith A W. Adv. Drug Deliv. Rev., 2005, 57: 1539-1550
[62] Kelly H M, Deasy P B, Ziaka E, Claffey N. Int. J. Pharm., 2004, 274: 167-183
[63] Levis S R, Deasy P B. Int. J. Pharm., 2003, 253: 145-157
[64] Price R R, Gaber B P, Lvov Y M. J. Microencapsul., 2001, 18: 713-722
[65] Krejcova K, Rabiskova M. Chem. Listy, 2008, 102: 35-39
[66] Lvov Y M, Price R, Gaber B, Ichinose I. Colloids Surf. A, 2002, 198: 375-382
[67] Abdullayev E, Shchukin D, Lvov Y M. Polym. Mater. Sci. Eng., 2008, 99: 331-332
[68] Veerabadran N, Mongayt D, Torchilin V, Price R, Lvov Y M. Macromol. Rapid Commun., 2009, 24: 99-103
[69] Fix D, Andreeva D V, Lvov Y M, Shchukin D G, Möhwald H. Adv. Funct. Mater., 2009, 19: 1720-1727
[70] Zang J, Konduri S, Nair S, Sholl D S. ACS Nano, 2009, 3: 1548-1556
[71] Guimaraes L, Enyashin A N, Frenzel J, Heine T, Duarte H A, Seifert G. ACS Nano, 2007, 1: 362-368
[72] Liu Y C, Shen J W, Gubbins K E, Moore J D, Wu T, Wang Q. Phys. Rev. B, 2008, 77: art. no. 125438
[73] Mamontov E, Burnham C J, Chen S H, Moravsky A P, Loong C K, de Souza N R, Kolesnikov A I. J. Chem. Phys., 2006, 124: 194703-194706
[74] Won C Y, Joseph S, Aluru N R. J. Chem. Phys., 2006, 125: 114701-114709
[75] Striolo A. Nanotechnology, 2007, 18: 475704-475710
[76] Won C Y, Aluru N R. J. Am. Chem. Soc., 2007, 129: 2748-2749
[77] Paoli H, Methivier A, Jobic H, Krause C, Pfeifer H, Stallmach F, Karger J. Microporous Mesoporous Mater., 2002, 55: 147-158
[78] Konduri S, Tong H M, Chempath S, Nair S. J. Phys. Chem. C, 2008, 112: 15367-15374
[79] Konduri S, Mukherjee S, Nair S. ACS Nano, 2007, 1: 393-402
[80] Mukherjee S, Bartlow V M, Nair S. Chem. Mater., 2005, 17: 4900-4909
[81] 陈荣峰(Chen R F), 张冰(Zhang B), 曹艳霞(Cao Y X). CN 200710054559.2, 2007
[82] Ohashi F, Tomura S, Akaku K, Hayashi S, Wada S I. J. Mater. Sci., 2004, 39: 1799-1801
[83] Rong T J, Xiao J K. Mater. Lett., 2002, 57: 297-301
[84] Zatta L, de Costa Gardolinski J E F da C, Wypych F. Appl. Clay Sci., 2011, 51: 165-169
[85] Xiao Q G, Tao X, Chen J F. Ind. Eng. Chem. Res., 2009, 46: 459-463
[86] Martinez-Gallegos S, Bulbulian S. Clays Clay Miner., 2004, 52: 650-656
[87] Corma A, Fornes V, Rey F. Adv. Mater., 2002, 14: 71-74
[88] Tierrablanca E, Romero-García J, Roman P, Cruz-Silva R. Appl. Catal. A, 2010, 381: 267-273
[89] Shchukin D G, Sukhorukov G B, Price R R, Lvov Y M. Small, 2005, 1: 510-513
[90] Zhai R, Zhang B, Liu L, Xie Y D, Zhang H Q, Liu J D. Catal. Commun., 2010, 12: 259-263
[91] Machado G S, de Freitas Castro K A D, Wypych F, Nakagaki S. J. Mol. Catal. A, 2008, 283: 99-107
[92] Liu P, Zhao M F. Appl. Surf. Sci., 2009, 255: 3989-3993
[93] Nakagaki S, Machado G S, Halma M, Marangon A A S, Castro K A D F, Mattoso N, Wypych F. J. Catal., 2006, 242: 110-117
[94] Barrientos-Ramírez S, Ramos-Fernández E V, Silvestre-Albero J, Sepúlveda-Escribano A, Pastor-Blas M M, González-Montiel A. Microporous Mesoporous Mater., 2009, 120: 132-140
[95] Gualtieri A F. Phys. Chem. Miner., 2001, 28: 719-728
[96] Qiu J Y, Zhang C, Komeya K, Meguro T, Tatami T, Cheng Y B. J. Aust. Ceram. Soc., 2001, 37: 45-49
[97] Kutsuna S, Chen L, Nohara K, Takeuchi K, Ibusuki T. Environ. Sci. Technol., 2002, 36: 3118-3123
[98] Levis S R, Deasy P B. Int. J. Pharm., 2003, 253: 145-157
[99] Klimkiewicz R, Drag E B. J. Phys. Chem. Solids, 2004, 65: 459-464
[100] Lvov Y, Price R, Gaber B, Ichinose I. Colloids Surf. A, 2002, 198/200: 375-382
[101] White G V, Rumsey B. Key Eng. Mater., 2004, 264/268: 889-892
[102] Zhou J, Lu L, Li X. Process for Preparation of Catalytic Cracking Catalyst from Catalyst Powder. Industrial Report, China, 2004
[103] Novembre D, Di Sabatino B, Gimeno D. Clays Clay Miner., 2005, 53: 28-36
[104] Qiu Q, Hlavacek V, Prochazka S. Ind. Eng. Chem. Res., 2005, 44: 2469-2476
[105] Luca V, Thomson S. J. Mater. Chem., 2000, 10: 2121-2126
[106] Wang A P, Kang F Y, Huang Z H, Guo Z C. Clays Clay Miner., 2006, 54: 485-490
[107] Antill S J, Kepert C J. Aust. J. Chem., 2003, 56: 723-723
[108] Fu Y B, Zhang L D. J. Nanosci. Nanotechnol., 2005, 5: 1113-1119
[109] Fu Y B, Zhang L D, Zheng J Y. J. Nanosci. Nanotechnol., 2005, 5: 558-564
[110] Wang A P, Kang F Y, Huang Z H, Guo Z C, Chuan X Y. Microporous Mesoporous Mater., 2008, 108: 318-324
[111] Lvov Y M, Grozdits G A, Eadula S, Zheng Z G, Lu Z H. Nordic PulpPap. Res. J., 2006, 21: 552-557
[112] Lu Z H, Eadula S, Zheng Z G, Xu K, Grozdits G, Lvov Y M. Colloids Surf. A, 2007, 292: 56-62
[113] Liu G Y, Kang F Y, Li B H, Huang Z H, Chuan X Y. J. Phys. Chem. Solids, 2006, 67: 1186-1189
[114] Fu Y B, Zhang L D. J. Solid State Chem., 2005, 178: 3595-3600
[115] Fu Y B, Zhang L D, Zheng J Y. Trans. Nonferrous Metals. Soc., 2004, 14: 152-156
[116] Zhao Y F, Zhang B, Zhang X, Wang J H, Liu J D, Chen R F. J. Hazard. Mater., 2010, 178: 658-664
[117] Querol X, Moreno N, Umana J C, Alastuey A, Hernandez E, Lopez-Soler A, Plana F. Int. J. Coal Geol., 2002, 50: 413-423
[118] Saada M A, Soulard M, Patarin J, Regis R C. Microporous Mesoporous Mater., 2009, 122: 275-282
[119] Juan R, Hernandez S, Andres J M, Ruiz C. J. Hazard. Mater., 2009, 161: 781-786
[120] Wu D Y, Zhang B H, Li C J, Zhang Z J, Kong H N. J. Colloid Interface Sci., 2006, 304: 300-306
[121] Youssef H, Ibrahim D, Komarneni S. Microporous Mesoporous Mater., 2008, 115: 527-534
[122] Petkowicz D I, Rigo R T, Radtke C, Pergher S B, dos Santos J H Z. Microporous Mesoporous Mater., 2008, 116: 548-554
[123] Yang C, Liu P, Zhao Y Q. Electrochim. Acta, 2010, 55: 6857-6864
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[7] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[8] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[13] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[14] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[15] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
Viewed
Full text


Abstract

Application of Halloysite Nanotubes