中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Synthesis of Zeolites by Dry Gel Conversion

Yang Na1, Yue Mingbo1,2, Wang Yimeng1*   

  1. 1. Shanghai Key Lab of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 20006;
    2. School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
  • Received: Revised: Online: Published:
PDF ( 1789 ) Cited
Export

EndNote

Ris

BibTeX

Compared with traditional hydrothermal synthesis (HTS), dry gel conversion (DGC) synthesis of zeolites has the advantages of high yield, less waste, less usage of templates,etc. Firstly, this review summarized the developments in last decade and pivoted on the role of water. In typical DGC synthesis, the gel powder keeps intact with the liquid including liquid water. However, water could also be the vapor or those adsorbed/absorbed in gel powders. Therefore, both the water added and those included in gel powder may affect the nucleation, and growth of zeolite, phase selectivity and transformation, and the properties of obtained zeolite. It is believed that water has been the prerequisite for the transformation of zeolite from initial gel. And the required amount of water differs by structural properties of zeolite. Apart from water, other factors have been seen as contributing roles as well in the synthesis condition. Secondly, the difference between HTS and DGC is discussed. Thirdly, this review provided some insights into the formation mechanism of zeolite in DGC process, where nanoparticles and semi-crystalline intermediates play the role. Finally, this review illustrated the applications of DGC in the synthesis of hierarchical zeolite, zeolite film, zeolite monolith and others. Some advices about DGC used in the synthesis of these relatively new materials are concluded. Contents
1 Introduction
2 Definition of DGC
3 Factors in crystallization by DGC
3.1 Role of water
3.2 Other factors
4 Differences between HTS and DGC
5 Crystal growth and zeolite synthesis mechanism
6 Applications in fabrication of zeolite-like materials
6.1 Synthesis of hierarchical zeolite
6.2 Synthesis of zeolite monolith and other zeolite-like materials
7 Outlook

CLC Number: 

[1] Cundy C S, Cox P A. Micro. Meso. Mater., 2005, 82: 1-78
[2] Xu W, Dong J, Li J, Li J, Wu F. Chem. Commun., 1990, 755-756
[3] Matsukata M, Ogura M, Osaki T, Rao P, Nomura M, Kikuchi E. Top. Catal., 1999, 9: 77-92
[4] 姚建峰(Yao J F), 张利雄(Zhang L X), 徐南平(Xu N P). 南京工业大学学报(Journal of Nanjing University of Technology), 2004, 26: 103-109
[5] 任瑜(Ren Y), 董维阳(Dong W Y), 龙英才(Long Y C). 上海化工(Shanghai Chemical Industry), 2000, (20): 24-27
[6] Chen B H, Huang Y N. Micro. Meso. Mater., 2009, 123: 71-77
[7] Bandyopadhyay M, Bandyopadhyay R, Kubota Y, Sugi Y. Chem. Lett., 2000, 29: 1024-1025
[8] Bandyopadhyay R, Kubota Y, Sugi Y. Stud. Surf. Sci. Catal., 2002, 142: 15-22
[9] Niphadkar P S, Kotwa M S, Deshpande S S, Bokade V V, Joshi P N. Mater. Chem. Phys., 2009, 114: 344-349
[10] Hu D, Xia Q H, Lu X H, Luo X B, Liu Z M. Mater. Res. Bull., 2008, 43: 3553-3561
[11] Arnold A, Hunger M, Weitkamp J. Micro. Meso. Mater., 2004, 67: 205-213
[12] Bandyopadhyay R, Bandyopadhyay M, Kubota Y, Sugi Y. J. Porous Mater., 2002, 9: 83-95
[13] Saha S K, Waghmode S B, Kubota Y, Sugi Y. Mater. Lett., 2004, 58: 2918-2923
[14] Naik S P, Chiang A S T, Thompson R W. J. Phys. Chem. B, 2003, 107: 7006-7014
[15] Shu G, Liu J M, Chiang A S T, Thompson R W. Adv. Mater., 2006, 18: 185-189
[16] Chen B H, Huang Y N. J. Am. Chem. Soc., 2006, 128: 6437-6446
[17] Cundy C S, Cox P A. Chem. Rev., 2003, 103: 663-701
[18] Saha S K, Waghmode S B, Maekawa H, Kawase R, Komura K, Kubota Y, Sugi Y. Micro. Meso. Mater., 2005, 81: 277-287
[19] Goergen S, Guillon E, Patarin J, Rouleau L. Micro. Meso. Mater., 2009, 126: 283-290
[20] Ke X, Xu L, Zeng C, Zhang L, Xu N. Micro. Meso. Mater., 2007, 106: 68-75
[21] Matsukata M, Kizu K, Ogura M, Kikuchi E. Cryst. Growth Des., 2001, 1: 509-516
[22] Weitkamp J, Hunger M. Stud. Surf. Sci. Catal., 2005, 155: 1-12
[23] Goergen S, Saada M, Soulard M, Rouleau L, Patarin J. J. Porous Mater., 2010, 17: 635-641
[24] Shao H, Yao J, Ke X, Zhang L, Xu N. Mater. Res. Bull., 2009, 44: 956-959
[25] Alfaro S, Valenzuela M A, Bosch P. J. Porous Mater., 2009, 16: 337-342
[26] Hirota Y, Murata K, Tanaka S, Nishiyama N, Egashira Y, Ueyama K. Mater. Chem. Phys., 123: 507-509
[27] Saha S K, Kubota Y, Sugi Y. Chem. Lett., 2003, 32: 1026-1027
[28] Khan N A, Park J H, Jhung S H. Mater. Res. Bull., 2010, 45: 377-381
[29] Trinh T T, Jansen A P J, van Santen R A, Meijer E J. J. Phys. Chem. C, 2009, 113: 2647-2652
[30] Trinh T T, Jansen A P J, van Santen R A, VandeVondele J, Meijer E J. ChemPhysChem, 2009, 10: 1775-1782
[31] 徐如人(Xu R R), 庞文琴(Pang W Q). 分子筛与多孔化学(Molecular Sieve and Porous Material Chemistry). 北京: 科学出版社(Beijing: Science Press), 2004. 201
[32] Mora-Fonz M J, Catlow C R A, Lewis D W. Stud. Surf. Sci. Catal., 2005, 158: 295-302
[33] Mora-Fonz M J, Catlow C R A, Lewis D W. Phys. Chem. Chem. Phys., 2008, 10: 6571-6578
[34] Inagaki S, Nakatsuyama K, Kikuchi E, Ma-tsukata M. Bull. Chem. Soc. Jpn., 2010, 83: 69-74
[35] Inagaki S, Nakatsuyama K, Kikuchi E, Ma-tsukata M. Stud. Surf. Sci. Catal., 2005, 158: 343-350
[36] Chen B, Huang Y. J. Phys. Chem. C, 2007, 111: 15236-15243
[37] Chen B H, Kirby C W, Huang Y N. J. Phys. Chem. C, 2009, 113: 15868-15876
[38] Arnold A, Steuernagel S, Hunger M, Weitkamp J. Micro. Meso. Mater., 2003, 62: 97-106
[39] Matsukata M, Osaki T, Ogura M, Kikuchi E. Micro. Meso. Mater., 2002, 56: 1-10
[40] Terasaki O, Ohsuna T, Alfredsson V, Bovin J O, Watanabe D, Carr S W, Anderson M W. Chem. Mater., 1993, 5: 452-458
[41] Cheng X W, Wang J, Yu H, Guo J, He H Y, Long Y C. Micro. Meso. Mater., 2009, 118: 152-162
[42] Chou C, Cundy C S, Garforth A A. Stud. Surf. Sci. Catal., 2005, 156: 393-400
[43] Chou Y H, Cundy C S, Garforth A A, Zholobenko V L. Micro. Meso. Mater., 2006, 89: 78-87
[44] Egeblad K, Kustova M, Klitgaard S K, Zhu K, Christensen C H. Micro. Meso. Mater., 2007, 101: 214-223
[45] Fang Y, Hu H. J. Am. Chem. Soc., 2006, 128: 10636-10637
[46] Wang J, Vinu A, Coppens M O. J. Mater. Chem., 2007, 17: 4265-4273
[47] Zhou J, Hua Z L, Shi J L, He Q J, Guo L M, Ruan M L. Chem. Eur. J., 2009, 15: 12949-12954
[48] Koekkoek A J J, Degirmenci V, Hensen E J M. J. Mater. Chem., 2011, 21: 9279-9289
[49] Moller K, Yilmaz B, Jacubinas R M, Muller U, Bein T. J. Am. Chem. Soc., 2011, 133: 5284-5295
[50] Majano G, Mintova S, Ovsitser O, Mihailova B, Bein T. Micro. Meso. Mater., 2005, 80: 227-235
[51] Ke X, Zeng C, Yao J, Zhang L, Xu N. Mater. Lett., 2008, 62: 3316-3318
[52] Bhaumik A, Tatsumi T. Micro. Meso. Mater., 2000, 34: 1-7
[53] Lafjah M, Mansour R, Kadiri M. Bull. Catal. Soc. (India), 2007, 6: 34-41
[54] 赵阳(Zhao Y), 郑亚峰(Zhen Y F), 辛峰(Xin F). 化学反应与工程(Chemical Reaction Engineering and Technology), 2004, 20(4): 357-362
[55] Yang H F, Shi Q H, Tian B Z, Xie S H, Zhang F Q, Yan Y, Tu B, Zhao D Y. Chem. Mater., 2003, 15: 536-541
[56] Zhang F, Yan Y, Meng Y, Xia Y, Tu B, Zhao D. Micro. Meso. Mater., 2007, 98: 6-15
[57] Dong A G, Wang Y J, Tang Y, Ren N, Zhang Y H, Gao Z. Chem. Mater., 2002, 14: 3217-3219
[58] Alfaro S, Arruebo M, Coronas J, Menendez M, Santamaria J. Micro. Meso. Mater., 2001, 50: 195-200
[59] Wang Y J, Tang Y, Dong A G, Wang X D, Ren N, Shan W, Gao Z. Adv. Mater., 2002, 14: 994-997
[60] Lei Q, Zhao T B, Li F Y, Zhang L L, Wang Y. Chem. Commun., 2006, 1769-1771
[61] Zhao T B, Xu X, Tong Y C, Lei Q, Li F Y, Zhang L L. Catal. Lett., 2010, 136: 266-270
[62] Lei Q, Zhao T B, Li F Y, Wang Y F, Hou L L. J. Porous Mater., 2008, 15: 643-646
[63] Wang Y J, Tang Y, Dong A G, Wang X D, Ren N, Gao Z. J. Mater. Chem., 2002, 12: 1812-1818
[64] Yang H Q, Liu Z C, Gao H X, Xie Z K. J. Mater. Chem., 2010, 20: 3227-3231
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[3] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[4] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[5] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen. Condensed Matter and Chemical Reactions in Hydrothermal Systems [J]. Progress in Chemistry, 2022, 34(7): 1492-1508.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[10] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[11] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[12] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[13] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[14] Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan, Wanying Lei. The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(12): 2686-2699.
[15] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.