中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Stabilization of Nanocatalysts in Fuel Cells

Chen Weimin1,2   

  1. 1. School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China;
    2. Liaoning Engineering Research Center of Special Reserve Powers, Shenyang 110159, China
  • Received: Revised: Online: Published:
PDF ( 1129 ) Cited
Export

EndNote

Ris

BibTeX

Low temperature fuel cells are considered to be promising portable power sources. Pt based noble metal nanocatalysts are widely used as electrocatalysts in low temperature fuel cells. The electrochemical stability of nanocatalysts is of significance for long-term operations of fuel cells. Unfortunately, Pt based nanocatalysts are unstable in fuel cells and tend to lose their activities gradually during long-term discharge processes. The activity losses of nanocatalysts are normally caused by nanoparticle agglomeration, metal dissolution, poisoning, support corrosion, etc. In order to extend the lifetime of fuel cells and save costs, the stability of nanocatalysts under internal environments of fuel cells should be improved. Recently, studies regarding the stabilization of Pt based nanocatalysts attracted much attention and various methods were developed to prevent the degradation of nanocatalysts. In this paper, recent research works about the stabilization of nanocatalysts in low temperature fuel cells are reviewed. Firstly, nanocatalysts are stabilized by support modifications, which include the graphitization of carbon supports, the doping of carbon supports, the surface functionalization of carbon supports and the use of other supports. Secondly, nanocatalysts are stabilized by steric effects, which are related to the surface covering of catalyst nanoparticles, the micro-pore enveloping of catalyst particles, the monolayer self-assembly of polyoxometallate on the catalyst surface and the steric obstruction of catalyst nanoparticles by polymer electrolytes. Thirdly, nanocatalysts are stabilized by synergetic effects, such as the elevation of metal oxidation potentials and the enhancement of the interaction between catalyst components. Finally, an outlook of the future development of the stabilization of nanocatalysts in low temperature fuel cells is provided. Contents
1 Introduction
2 Stabilization of catalysts by support modifications
2.1 Graphitization of carbon supports
2.2 Doping of carbon supports
2.3 Surface functionalization of carbon supports
2.4 Use of other supports
3 Stabilization of catalysts by steric effects
4 Stabilization of catalysts by synergetic effects
5 Conclusions and outlook

CLC Number: 

[1] Carrette L, Friedrich K A, Stimming U. ChemPhysChem, 2000, 1(4): 162-193
[2] 衣宝廉(Yi B L). 燃料电池--原理、技术、应用(Fuel Cell: Principle, Technique and Applications). 北京: 化学工业出版社(Beijing: Chem. Ind. Press), 2003. 160-382
[3] Aricò A S, Srinivasan S, Antonucci V. Fuel Cells, 2001, 1(2): 133-161
[4] Gottesfeld S. J. Power Sources, 2007, 171(1): 37-45
[5] Petrii O A. J. Solid State Electr., 2008, 12(5): 609-642
[6] Antolini E. J. Power Sources, 2007, 170(1): 1-12
[7] Basri S, Kamarudin S K, Daud W R W, Yaakub Z. Int. J. Hydrogen Energy, 2010, 35(15): 7957-7970
[8] Tang L, Han B, Persson K, Friesen C, He T, Sieradzki K, Ceder G. J. Am. Chem. Soc., 2010, 132(2): 596-600
[9] 邵玉艳(Shao Y Y), 尹鸽平(Yin G P), 王家钧(Wang J J), 高云智(Gao Y Z). 催化学报(Chinese J. Catal. ), 2006, 27(3): 281-284
[10] Shao Y, Kou R, Wang J, Viswanathan V V, Kwak J H, Liu J, Wang Y, Lin Y. J. Power Sources, 2008, 185(1): 280-286
[11] Chen W, Sun G, Liang Z, Mao Q, Li H, Wang G, Xin Q, Chang H, Pak C, Seung D. J. Power Sources, 2006, 160(2): 933-939
[12] Yousfi-Steiner N, Mocotéguy P, Candusso D, Hissel D. J. Power Sources, 2009, 194(1): 130-145
[13] Wang Z B, Zuo P J, Chu Y Y, Shao Y Y, Yin G P. Int. J. Hydrogen Energy, 2009, 34(10): 4387-4394
[14] 陈维民(Chen W M), 辛勤(Xin Q), 孙公权(Sun G Q). 催化学报(Chinese J. Catal. ), 2008, 29(5): 497-502
[15] Chung C G, Kim L, Sung Y W, Lee J, Chung J S. Int. J. Hydrogen Energy, 2009, 34(21): 8974-8981
[16] Chen W, Sun G, Guo J, Zhao X, Yan S, Tian J, Tang S, Zhou Z, Xin Q. Electrochim. Acta, 2006, 51(12): 2391-2399
[17] Cha H C, Chen C Y, Shiu J Y. J. Power Sources, 2009, 192(2): 451-456
[18] Reiser C A, Bregoli L, Patterson T W, Yi J S, Yang J D, Perry M L, Jarvi T D. Electrochem. Solid-State Lett., 2005, 8(6): A273-A276
[19] Tang H, Qi Z, Ramani M, Elter J F. J. Power Sources, 2006, 158(2): 1306-1312
[20] Patterson T W, Darling R M. Electrochem. Solid-State Lett., 2006, 9(4): A183-A185
[21] Kangasniemi K H, Condit D A, Jarvic T D. J. Electrochem. Soc., 2004, 151(4): E125-E132
[22] Wang J, Yin G, Shao Y, Zhang S, Wang Z, Gao Y. J. Power Sources, 2007, 171(2): 331-339
[23] Siroma Z, Ishii K, Yasuda K, Miyazaki Y, Inaba M, Tasaka A. Electrochem. Commun., 2005, 7(11): 1153-1156
[24] Roen L M, Paik C H, Jarvic T D. Electrochem. Solid-State Lett., 2004, 7(1): A19-A22
[25] 邵玉艳(Shao Y Y), 尹鸽平(Yin G P), 高云智(Gao Y Z). 化学学报(Acta Chim. Sin.), 2006, 64(16): 1752-1756
[26] Shao Y, Yin G, Zhang J, Gao Y. Electrochim. Acta, 2006, 51(26): 5853-5857
[27] Wang X, Li W, Chen Z, Waje M, Yan Y. J. Power Sources, 2006, 158(1): 154-159
[28] Li L, Xing Y. J. Electrochem. Soc., 2006, 153(10): A1823-A1828
[29] Wang J, Yin G, Shao Y, Wang Z, Gao Y. J. Phys. Chem. C, 2008, 112(15): 5784-5789
[30] Stevens D A, Hicks M T, Haugen G M, Dahn J R. J. Electrochem. Soc., 2005, 152(12): A2309-A2315
[31] Zhang S, Shao Y, Li X, Nie Z, Wang Y, Liu J, Yin G, Lin Y. J. Power Sources, 2010, 195(2): 457-460
[32] Liu S H, Yu W Y, Chen C H, Lo A Y, Hwang B J, Chien S H, Liu S B. Chem. Mater., 2008, 20(4): 1622-1628
[33] Natarajan S K, Hamelin J. J. Electrochem. Soc., 2009, 156(2): B210-B215
[34] Chen Y, Wang J, Liu H, Li R, Sun X, Ye S, Knights S. Electrochem. Commun., 2009, 11(10): 2071-2076
[35] Yue B, Ma Y, Tao H, Yu L, Jian G, Wang X, Wang X, Lu Y, Hu Z. J. Mater. Chem., 2008, 18(15): 1747-1750
[36] Kundu S, Nagaiah T C, Xia W, Wang Y, Dommele S V, Bitter J H, Santa M, Grundmeier G, Bron M, Schuhmann W, Muhler M. J. Phys. Chem. C, 2009, 113(32): 14302-14310
[37] Acharya C K, Li W, Liu Z, Kwon G, Turner C H, Lane A M, Nikles D, Klein T, Weaver M. J. Power Sources, 2009, 192(2): 324-329
[38] Li Y, Hu F P, Wang X, Shen P K. Electrochem. Commun., 2008, 10(7): 1101-1104
[39] Kou R, Shao Y, Wang D, Engelhard M H, Kwak J H, Wang J, Viswanathan V V, Wang C, Lin Y, Wang Y, Aksay I A, Liu J. Electrochem. Commun., 2009, 11(5): 954-957
[40] Ye J, Liu J, Zhou Y, Zou Z, Gu J, Yu T. J. Power Sources, 2009, 194(2): 683-689
[41] Chen W, Xin Q, Sun G, Wang Q, Mao Q, Su H. J. Power Sources, 2008, 180(1): 199-204
[42] Hull R V, Li L, Xing Y, Chusuei C C. Chem. Mater., 2006, 18(7): 1780-1788
[43] Yang D Q, Sacher E. J. Phys. Chem. C, 2008, 112(11): 4075-4082
[44] Kim Y T, Mitani T. J. Catal., 2006, 238(2): 394-401
[45] Huang S Y, Ganesan P, Park S, Popov B N. J. Am. Chem. Soc., 2009, 131(39): 13898-13899
[46] Huang S Y, Ganesan P, Popov B N. Appl. Catal. B, 2010, 96(1/2): 224-231
[47] Chhina H, Campbell S, Kesler O. J. Power Sources, 2007, 164(2): 431-440
[48] Chhina H, Campbell S, Kesler O. J. Electrochem. Soc., 2007, 154(6): B533-B539
[49] Lee K S, Park I S, Cho Y H, Jung D S, Jung N, Park H Y, Sung Y E. J. Catal., 2008, 258(1): 143-152
[50] Du C, Chen M, Cao X, Yin G, Shi P. Electrochem. Commun., 2009, 11(2): 496-498
[51] Huang S Y, Ganesan P, Popov B N. Appl. Catal. B, 2009, 93(1/2): 75-81
[52] Drillet J F, Dittmeyer R, Jüttner K. J. Appl. Electrochem., 2007, 37(11): 1219-1226
[53] Takenaka S, Matsumori H, Nakagawa K, Matsune H, Tanabe E, Kishida M. J. Phys. Chem. C, 2007, 111(42): 15133-15136
[54] Takenaka S, Matsumori H, Matsune H, Tanabe E, Kishida M. J. Electrochem. Soc., 2008, 155(9): B929-B936
[55] Shimazaki Y, Kobayashi Y, Sugimasa M, Yamada S, Itabashi T, Miwa T, Konno M. J. Colloid. Interf. Sci., 2006, 300(1): 253-258
[56] Shimazaki Y, Hayasaka S, Koyama T, Nagao D, Kobayashi Y, Konno M. J. Colloid. Interf. Sci., 2010, 351(2): 580-583
[57] Ng Y H, Ikeda S, Harada T, Sakata T, Mori H, Takaoka A, Matsumura M. Langmuir, 2008, 24(12): 6307-6312
[58] Han D M, Guo Z P, Zhao Z W, Zeng R, Meng Y Z, Shu D, Liu H K. J. Power Sources, 2008, 184(2): 361-369
[59] Guo Z P, Han D M, Wexler D, Zeng R, Liu H K. Electrochim. Acta, 2008, 53(22): 6410-6416
[60] Maiyalagan T. Int. J. Hydrogen Energy, 2009, 34(7): 2874-2879
[61] Cheng N, Mu S, Pan M, Edwards P P. Electrochem. Commun., 2009, 11(8): 1610-1614
[62] Zhang S, Shao Y, Yin G, Lin Y. J. Mater. Chem., 2009, 19(42): 7995-8001
[63] Zhang J, Sasaki K, Sutter E, Adzic R R. Science, 2007, 315(5809): 220-222
[64] Liang Z X, Zhao T S, Xu J B. J. Power Sources, 2008, 185(1): 166-170
[65] Liu G, Zhang H, Zhong H, Hu J, Xu D, Shao Z. Electrochim. Acta, 2006, 51(26): 5710-5714
[66] Tian J, Sun G, Cai M, Mao Q, Xin Q. J. Electrochem. Soc., 2008, 155(2): B187-B193
[67] Tian J, Sun G, Jiang L, Yan S, Mao Q, Xin Q. Electrochem. Commun., 2007, 9(4): 563-568
[68] Pan D, Chen J, Tao W, Nie L, Yao S. Langmuir, 2006, 22(13): 5872-5876
[69] Li W, Lu J, Du J, Lu D, Chen H, Li H, Wu Y. Electrochem. Commun., 2005, 7(4): 406-410
[70] Scibioh M A, Kim S K, Cho E A, Lim T H, Hong S A, Ha H Y. Appl. Catal. B, 2008, 84(3/4): 773-782
[1] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[2] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[3] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[6] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[7] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[8] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[9] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.
[10] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[11] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[12] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[13] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[14] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.
[15] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.