中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

Special Issue: 锂离子电池

Graphene-Containing Composite Materials for Lithium-Ion Batteries Applications

Zhou Guanwei, He Yushi*, Yang Xiaowei, Gao Pengfei, Liao Xiaozhen, Ma Zifeng   

  1. Institute of Electrochemical and Energy Technology, Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received: Revised: Online: Published:
PDF ( 4011 ) Cited
Export

EndNote

Ris

BibTeX

Graphene, a one-atom layer of graphite, possesses unique two dimensional structure and excellent electrical, mechanical, and thermal properties. It is considered as one of the most promising candidates for the future electrode materials for lithium ion batteries. Since the microstructure of the electrode material has great influence on its performance, the synthesis of electrode materials with graphene is widely studied to obtain specific morphologies and microstructures with great electrochemical performance improvements. In this review, we highlight recent advancements in the studies of the graphene-containing materials used in lithium ion batteries. Graphene acts as not only a mechanically stable buffer to accommodate the volume effect during cycling, but also a conductive network to enhance the electric conductivity of the anode composite materials. The graphene-containing anode materials can exhibit better cycling and rate performances. Especially, when forming optimized microstructures, such as sandwich-like blocks or other well-controlled encapsulating structures, the graphene can significantly improve electrochemical properties of anode composite materials. A continuous 3D conductive network formed by graphene in the cathode composite materials can effectively improve the electron and ion transportation. Additionally, graphene used as the conductive additive can achieve better charge/discharge performance with a much lower adding amount than those of commercial carbon-based additives. A prospect for future research developments in this field is proposed at the end of this review. Contents
1 Introduction
2 Preparation of graphene
3 Application of graphene in anodes of lithium-ion batteries
3.1 Electrochemical properties of graphene
3.2 Composite materials based on graphene
4 Application of graphene in cathodes of lithium-ion batteries
5 Application of graphene as conductive additive
6 Conclusions and Outlook

CLC Number: 

[1] Brandt K. Solid State Ionics, 1994, 69: 173-183
[2] 杨遇春 (Yang Y C). 电池 (Battery Bimonthly), 1993, 23 (5): 230-233
[3] Yazami R, Touzain P. J. Power Sources, 1983, 9: 365-371
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666-669
[5] Chae H K, Siberio-Pérez D Y, Kim J, Go Y B, Eddaoudi M, Matzger A J, O’Keeffe M, Yaghi O M. Nature, 2004, 427: 523-527
[6] Zhang Y B, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438: 201-204
[7] Sclladler L S, Giammris S C, Ajayan P M. Appl. Phys. Lett., 1998, 73: 3842-3844
[8] McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud’homme R K, Aksay I A. Chem. Mater., 2007, 19: 4396-4404
[9] Srivastava S K, Shukla A K, Vankar V D, Kumar V. Thin Solid Films, 2005, 492: 124-130
[10] De Heer W A, Berger C, Wu X S, First P N, Conard E H, Li X B, Li T B, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G. Solid State Commun., 2007, 143: 92-100
[11] Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N, de Heer W A. J. Phys. Chem. B, 2004, 108: 19912-19916
[12] Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Adv. Mater., 2008, 20: 4490-4493
[13] Gómez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K. Nano Lett., 2007, 7: 3499-3503
[14] Brodie B C. Ann. Chim. Phys., 1860, 59: 466-472
[15] Staudenmaier L. Ber. Deut. Chem. Ges., 1898, 31:1481-1499
[16] Fan Z J, Kai W, Yan J, Wei T, Zhi L, Feng J, Ren Y, Song L, Wei F. ACS Nano, 2011, 5: 191-198
[17] Salas E C, Sun Z, Lüttge A, Tour J M. ACS Nano, 2010, 4: 4852-4856
[18] Schniepp H C, Li J L, McAllister M J,S ai H, Herrera-Alonso M, Adamson D H, Prud’homme R K, Car R, Saville D A, Aksay I A. J. Phys. Chem. B, 2006, 110 (17):8535-8539
[19] Lv W, Tang D, He Y, You C, Shi Z, Chen X, Chen C, Hou P, Liu C, Yang Q. ACS Nano, 2009, 3: 3730-3736
[20] Wu Z S, Ren W C, Gao L B, Zhao J P, Chen Z P, Liu B L, Tang D M, Yu B, Jiang C B, Cheng H M. ACS Nano, 2009, 3: 411-417
[21] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458: 872-876
[22] Wei D C, Liu Y Q. Adv. Mater., 2010, 22: 3225-3241
[23] 徐秀娟(Xu X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12): 2560-2566
[24] 柏嵩(Bai S), 沈小平(Shen X P).化学进展(Progress in Chemistry), 2010, 22(11): 2107-2118
[25] Suzuki T, Hasegawa T, Mukai S R, Tamon H. Carbon, 2003, 41: 1933-1939
[26] Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Nano Lett., 2008, 8: 2277-2282
[27] Wang G, Shen X, Yao J, Park J. Carbon, 2009, 47: 2049-2053
[28] Guo P, Song H H, Chen X H. Electrochem. Commun., 2009, 11: 1320-1324
[29] Abouimrane A, Compton O C, Amine K, Nguyen S T. J. Phys. Chem. C, 2010, 114: 12800-12804
[30] Wang C Y, Li D, Too C O, Wallace G G. Chem. Mater., 2009, 21: 2604-2606
[31] Xiao X C, Liu P, Wang J S, Verbrugge M W, Balogh M P. Electrochem. Commun., 2011, 13: 209-212
[32] Lian P C, Zhu X F, Liang S Z, Li Z, Yang W S, Wang H H. Electrochim. Acta, 2010, 55: 3909-3914
[33] Tong X, Wang H, Wang G, Wan L, Ren Z, Bai J, Bai J. J. Solid State Chem., 2011, 184: 982-989
[34] Paek S M, Yoo E, Honma I. Nano Lett., 2009, 9: 72-75
[35] Yao J, Shen X P, Wang B, Liu H K, Wang G X. Electrochem. Commun., 2009, 11: 1849-1852
[36] Du Z F, Yin X M, Zhang M, Hao Q Y, Wang Y G, Wang T H. Mater. Lett., 2010, 64: 2076-2079
[37] Wang X Y, Zhou X F, Yao K, Zhang J G, Liu Z P. Carbon, 2011, 49: 133-139
[38] Wang G X, Wang B, Wang X L, Park J, Dou S X, Ahn H, Kim K. J. Mater. Chem., 2009, 19: 8378-8384
[39] Lian P C, Zhu X F, Liang S Z, Li Z, Yang W S, Wang H H. Electrochim. Acta, 2011, 56: 4532-4539
[40] Wang D H, Kou R, Choi D, Yang Z G, Nie Z, Li J, Saraf L V, Hu D, Zhang J G, Graff G L, Liu J, Pope M A, Aksay I A. ACS Nano, 2010, 4: 1587-1595
[41] Li Y M, Lv X J, Lu J, Li J H. J. Phys. Chem. C, 2010, 114: 21770-21774
[42] Chen S Q, Chen P, Wu M H, Pan D Y, Wang Y. Electrochem. Commun., 2010, 12: 1302-1306
[43] Wolfenstine J. J. Power Sources, 1999, 79: 111-113
[44] Chou S J, Wang J Z, Choucair M, Liu H K, Stride J A, Dou S X. Electrochem. Commun., 2010, 12: 303-306
[45] Xiang H F, Zhang K, Ji G, Lee J Y, Zou C J, Chen X D, Wu J S. Carbon, 2011, 49: 1787-1796
[46] Wang J Z, Zhong C, Chou S L, Liu H K. Electrochem. Commun., 2010, 12: 1467-1470
[47] Lee J K, Smith K B, Hayner C M, Kung H H. Chem. Commun., 2010, 2025-2027
[48] Evanoff K, Magasinski A, Yang J, Yushin G. Adv. Energy Mater., 2011, 1(4): 495-498
[49] He Y S , Gao P F, Chen J, Yang X W, Liao X Z, Yang J, Ma Z F. RSC Adv., 2011, 1(6): 958-960
[50] Kim H, Seo D, Kim S, Kim J, Kang K. Carbon, 2011, 49: 326-332
[51] Li B, Cao H, Shao J, Li G, Qu M, Yin G. Inorg. Chem., 2011, 50 (5): 1628-1632
[52] Yan J, Wei T, Qiao W, Shao B, Zhao Q, Zhang L, Fan Z. Electrochim. Acta, 2010, 55: 6973-6978
[53] Wu Z, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H. ACS Nano, 2010, 4 (6): 3187-3194
[54] Yang S P, Cui G K, Pang S P, Cao Q, Kolb U, Feng X L, Maier J, Muellen K. ChemSusChem, 2010, 3: 236-239
[55] He Y S, Bai D W, Yang X W, Chen J, Liao X J, Ma Z F. Electrochem. Commun., 2010, 12: 570-573
[56] Yang S B, Feng X L, Ivanovici S, Müllen K. Angew. Chem. Int. Ed., 2010, 49: 8408-8411
[57] Wang H L, Cui L F, Yang Y, Casalongue H S, Robinson J T, Liang Y Y, Cui Y, Dai H J. J. Am. Chem. Soc., 2010, 132: 13978-13980
[58] Mai Y J, Wang X L, Xiang J Y, Qiao Y Q, Zhang D, Gu C D, Tu J P. Electrochim. Acta, 2011, 56: 2306-2311
[59] Lian P C, Zhu X F, Xiang H F, Li Z, Yang W S, Wang H H. Electrochim. Acta, 2010, 56: 834-840
[60] Zhou G, Wang D W, Li F, Zhang L, Li N, Wu Z S, Wen L, Lu G Q, Cheng H M. Chem. Mater., 2010, 22: 5306-5313
[61] Wang G, Liu T, Luo Y J, Tong X, Wan L J, Zhao Y, Wang H, Ren Z Y, Bai J B. J. Alloys Compd., 2011, 509(24): L216-L220
[62] Wang D H, Choi D, Li J, Yang Z G, Nie Z M, Kou R, Hu D, Wang C, Saraf L V, Zhang J G, Aksay I A, Liu J. ACS Nano, 2009, 3: 907-914
[63] Shen L F, Yuan C Z, Luo H J, Zhang X G, Yang S D, Lu X J. Nanoscale, 2011, 3: 572-574
[64] Zhu N, Liu W, Xue M Q, Xie Z, Zhao D, Zhang M N, Chen J T, Cao T. Electrochim. Acta, 2010, 55: 5813-5818
[65] Fan Z J, Yan J, Wei T, Ning G Q, Zhi L J, Liu J C, Cao D X, Wang G L, Wei F. ACS Nano, 2011, 5(4): 2787-2794
[66] Wang L, Wang H B, Liu Z H, Xiao C, Dong S M, Han P X, Zhang Z Y, Zhang X Y, Bi C F, Cui G L. Solid State Ionics, 2010, 181: 1685-1689
[67] Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P. Electrochem. Commun., 2010, 12: 10-13
[68] Zhou X F, Wang F, Zhu Y M, Liu Z P. J. Mater. Chem., 2011, 21: 3353-3358
[69] Wang X L, Han W Q. ACS Appl. Mater. Interfaces, 2010, 2: 3709-3713
[70] Guo P, Song H H, Chen X H, Ma L L, Wang G H, Wang F. Anal. Chim. Acta, 2011, 688: 146-155
[71] Su F Y, You C H, He Y B, Lv W, Cui W, Jin F M, Li B H, Yang Q, Kang F. J. Mater. Chem., 2010, 20: 9644-9650
[72] Yang X W, Zhu J W, Qiu L, Li D. Adv. Mater., 2011, 23: 2833-2838
[1] Guohui Zhu, Hongxian Huan, Dawei Yu, Xueyi Guo, Qinghua Tian. Selective Recovery of Lithium from Spent Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(2): 287-301.
[2] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[3] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[4] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[5] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[6] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[7] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[8] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[9] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[10] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[11] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[12] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[13] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[14] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[15] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.