中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Application of Magnetic Ionic Liquids

Chen Biao1, Long Quan2, Zheng Baozhong1*   

  1. 1. Department of Materials Science and Engineering, Yunnan University, Kunming 650091, China;
    2. Modern Analysis and Testing Center, Yunnan University, Kunming 650091, China
  • Received: Revised: Online: Published:
PDF ( 2343 ) Cited
Export

EndNote

Ris

BibTeX

The unique physicochemical properties of magnetic ionic liquid (MIL) have attracted increasing interest due to their potential applications in various areas. In this paper, recent progress in applications of magnetic ionic liquid has been reviewed and discussed. Magnetic ionic liquid is a kind of ionic liquid which formed by organic cation and inorganic anion. It can be absorbed on the magnet, and has a certain magnetization in the presence of external magnetic field. Magnetic ionic liquid is a green solvent. In addition, magnetic ionic liquid can play as solvent, catalyst and template in organic synthesis, the resulting product is easy to separate and the structure of the product can be adjusted by an external magnetic field. Magnetic ionic liquid can be recycled and reused, and the catalytic activity of magnetic ionic liquid is not significantly reduced. In areas of separation, analysis, preparation of nano-materials,magnetic ionic liquid also have unique advantages. Especially, magnetic carbon nanotubes can be synthesized by using magnetic ionic liquid and carbon nanotubes. Contents
1 Introduction
2 The sorts of magnetic ionic liquids
3 The application of magnetic ionic liquids in catalysis
3.1 Catalyze polymerization reaction
3.2 Catalyze Friedel-Crafts reaction
3.3 Catalyze other reactions
4 The application of magnetic ionic liquids in carbon nanotubes
5 The application of magnetic ionic liquids in other fields
6 Recovery of magnetic ionic liquids
7 Conclusions and prospects

CLC Number: 

[1] Lenevisch S, Distefano M D. Analytical Biochemistry, 2011, 408: 316-320
[2] Nguyen T V, Zhang R, Vigneswaran S, Ngo H H, Kandasamy J, Mathes P. Desalination, 2011, 276: 96-102
[3] Luo X G, Zhang L N. Journal of Hazardous Materials, 2009, 171: 340-347
[4] Lim C W, Lee I S. Nanotoday, 2010, 5: 412-434
[5] Chen T Y, Cao Z, Guo X L, Nie J J, Xu J T, Fan Z Q, Du B Y. Polymer, 2011, 52: 172-179
[6] Seddon K R. Chem. Tech. Biotechnol., 1997, 2: 351-356
[7] 杨富明(Yang F M). 河南大学硕士论文(Master Dissertation of Henan University), 2010
[8] Hayashi S, Hamaguchi H. Chem. Lett., 2004, 33: 1590-1591
[9] Hayashi S, Hamaguchi H. Chem. Lett., 2005, 34: 740-740
[10] Hayashi S, Saha S, Hamaguchi H. IEEE Transactions on Magnetics, 2006, 42: 12-14
[11] Yang J Z, Xu W G, Zhang Q G, Jin Y, Zhang Z H. J. Chem. Thermodynamics, 2003, 35: 1855-1860
[12] Zhang Q G, Yang J Z, Lu X M, Gui J S, Huang M. Fluid Phase Equilibria, 2004, 207-211
[13] Pedro I D, Rojas D P, Albo J, Luis P, Irabien A, Blanco J A, Fermández J R. Journal of Physics: Condensed Matter, 2010, 22: art. no. 296006
[14] Pedro I D, Rojas D P, Blanco J A, Fernández J R. Journal of Magnetism and Magnetic Materials, 2011, 323: 1254-1257
[15] Yoshida Y, Tanaka H, Saito G. Chem. Lett., 2007, 36: 1096-1097
[16] Nguyen M D, Nguyen L V, Jeon E H, Kim J H, Cheong M, Kim H S, Lee J S. Catalysis, 2008, 258: 5-13
[17] 李小华(Li X H), 杨富明(Yang F M), 周清(Zhou Q), 张锁江(Zhang S J). 过程工程学报(The Chinese Journal of Process Engineering), 2010, 10: 788-794
[18] Yoshida Y, Otsuka A, Saito G, Natsume S, Nishibori E, Takata M, Sakata M, Takahashi M, Yoko T. Bull. Chem. Soc. Jpn., 2005, 78: 1921-1928
[19] Malick B, Balke B, Felser C, Mudring A V. Angewandte Chemie-International Edition, 2008, 47: 7635-7638
[20] Tang S, Babai A, Mudring A. Angew. Chem. Int. Ed., 2008, 47: 7631-7634
[21] Brown R J C, Dyson P J, Ellis D J, Welton T. Chem. Commun., 2001, 1862-1863
[22] Wei X, Yu L, Wang D, Jin X, Chen G Z. Green Chem., 2008, 10: 296-305
[23] Sasaki T, Tada M, Zhong C, Kume T, Twasawa Y. Journal of Molecular Catalysis A: Chemical, 2008, 279: 200-209
[24] Kim J Y, Kim J T, Song E A, Min Y K, Hamaguchi H. Macromolecules, 2008, 41: 2886-2889
[25] Gordon C M, Holbrey J D, Kenney A R, Seddon K R. Journal of Materials Chemistry, 1998, 8: 2627-2636
[26] Pringle J M, Orawan N, Chen J, Gordon G W, Maeia F, Douglas R M. Synthetic Metals, 2006, 156: 973-983
[27] Li L, Huang Y, Yan G, Liu F, Huang Z, Ma Z. Materials Letters, 2009, 63: 8-10
[28] Shang S, Li L, Yang X, Zheng L. Colloid and Interface Science, 2009, 333: 415-418
[29] Wei Y, Zhao Y, Li L, Yang X M, Yu X H, Yan G P. Poly. Adv. Technol., 2010, 21: 742-745
[30] 来婧娟(Lai J J), 周建华(Zhou J H), 郑敏刚(Zheng M G), 隆泉(Long Q), 郑保忠(Zheng B Z). 化学进展(Progress in Chemistry), 2008, 20: 899-908
[31] 黄强(Huang Q), 王丽丽(Wang L L), 郑保忠(Zheng B Z), 隆泉(Long Q). 化学进展(Progress in Chemistry), 2009, 21: 1782-1791
[32] 黄强(Huang Q), 郑保忠(Zheng B Z), 张树波(Zhang S B), 管洪涛(Guan H T), 陈刚(Chen G). 实验室研究与探索(Research and Exploration in Laboratory), 2010, 29: 24-26
[33] Kogelnig D, Stojanovic A, Kammer F V D, Terzief P, Galanski M, Jirsa F, Krachler R, Hofmann T, Keppler B K. Inorganic Chemistry Communications, 2010, 13: 1485-1488
[34] 丁仁岭(Ding R L), 孙学文(Sun X W). 油气田地面工程(Oil and Gas Field Surface Engineering), 2003, 22: 54-55
[35] 孙学文(Sun X W), 赵锁奇(Zhao S Q), 王仁安(Wang R A). 催化学报(Catalysis), 2004, 25: 247-251
[36] DeCastro C, Sauvage E, Valkenberg M H, Hölderich W F. Journal of Catalysis, 2000, 196: 86-94
[37] Qiao K, Deng Y. Journal of Molecular Catalysis A, 2001, 171: 81-84
[38] Sun X, Zhao S. Chem. Eng., 2006, 14: 289-293
[39] Csihony S, Mehdi H, Horváth I T. Green Chemistry, 2001, 3: 307-309
[40] Alexander M V, Khandekar A C, Samant S D. Molecular Catalysis A: Chemical, 2004, 223: 75-83
[41] Yin D H, Li C Z, Tao L, Yu N, Hu S, Yin D. Journal of Molecular Catalysis A: Chemical, 2006, 245: 260-265
[42] Li C Z, Liu W J, Zhao Z B. Catalysis Communications, 2007, 8: 1834-1837
[43] Bahrami K, Khodei M M, Shahbazi F. Tetrahedron Letters, 2008, 49: 3931-3934
[44] Bica K, Gaertner P. Organic Letters, 2006, 8: 733-735
[45] 刘艳梅(Liu Y M), 应敏(Ying M), 杨志杰(Yang Z J), 乐长高(Le Z G). 有机化学(Organic Chemistry), 2006, 26: 1286-1290
[46] Khosropour A R, Mohammadpoor-Baltork I, Ghorbankhani H. Catalysis Communications, 2006, 7: 713-716
[47] Wang H, Yan R, Li Z, Zhang X, Zhang S. Catalysis Communications, 2010, 11: 763-767
[48] Hasegawa E, Hirori N, Osawa C, Tayama E, Iwamoto H. Tetrahedron Letters, 2010, 51: 6535-6538
[49] Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Mirjafari A. Comptes Rendus Chimie, 2010, 13: 1468-1473
[50] Hu Y L, Liu Q F, Lu T T, Lu M. Catalysis Communications, 2010, 11: 923-927
[51] Pei X, Yan Y H, Yan L, Yang P, Wang J, Xu R, Chan-Park M B. Carbon, 2010, 48: 2501-2505
[52] Akitsu T, Einaga Y. Inorganic Chemistry Communications, 2006, 9: 1108-1110
[53] Jiang Y, Guo C, Liu H. China Particuology, 2007, 5: 130-133
[54] Lee S H, Ha S H, You C Y, Koo Y M. Korean J. Chem. Eng., 2007, 24: 436-437
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[5] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[6] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[7] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[8] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[9] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[10] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[11] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[12] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[13] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[14] Huina Zou, Shoufei Zhu. Progresses of 1,10-Phenanthroline Type Ligands in Fe/Co/Ni Catalysis [J]. Progress in Chemistry, 2020, 32(11): 1766-1803.
[15] Wenhao Wu, Wen Lei, Liqiong Wang, Sen Wang, Haijun Zhang. Preparation of Single Atom Catalysts [J]. Progress in Chemistry, 2020, 32(1): 23-32.
Viewed
Full text


Abstract

Application of Magnetic Ionic Liquids