中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Diversity of Active Intermediates in Homogeneous Catalytic Oxidations

Wang Yujuan1, Xu Jie2, Yin Guochuan1*   

  1. 1. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received: Revised: Online: Published:
PDF ( 967 ) Cited
Export

EndNote

Ris

BibTeX

Transition metal ions play significant roles in versatile biological and chemical oxidations. In addition to the generally believed metal oxo functional groups(Mn+ O), the metal hydroxo (Mn+-OH)and hydroperoxide functional groups (Mn+-OOH) have also been proposed to serve as the key active intermediates in versatile oxidation processes. However, the reasons why natural redox metalloenzymes make use of a metal oxo or hydroxo group to serve as their active intermediates in specific cases are not fully understood. In addition, certain organic compounds such as benzoquinone and organic N-oxide have also been reported to serve as catalyst in many chemical oxidation reactions, meanwhile, similar organic compounds like NADH and Coenzyme Q have been long believed to play the key roles in versatile biological metabolisms. Apparently, clarifying the oxidative relationships of these active intermediates would help to understand the enzymes' selections on them, thus promote understanding of their mechanisms and help the rational design of medicines, also it would benefit the design of selective oxidation catalysts. Herein, these active intermediates occurring in biological and chemical oxidation events are summarized in this paper. Their oxidative properties and related mechanisms have been discussed in text. Meanwhile, based on the available publications, the oxidative similarities and differences of the metal oxo with its corresponding hydroxo functional groups have also been briefly discussed. Contents
1 Introduction
2 Traditional theories in catalytic oxidations
3 New discoveries for the active metal intermediates in oxidations
4 The redox active organic intermediates in oxidations
5 The reactivity relationships of the metal oxo and its corresponding hydroxo moieties
6 Perspective

CLC Number: 

[1] Katsuki T, Sharpless K B. J. Am. Chem. Soc., 1980, 102: 5974-5976
[2] Groves J T. J. Chem. Edu., 1985, 62: 928-931
[3] Zhang W, Loebach J L, Wilson S R, Jacobsen E N. J. Am. Chem. Soc., 1990, 112: 2801-2803
[4] Groves J T, Lee J, Marla S S. J. Am. Chem. Soc., 1997, 119: 6269-6273
[5] Periana R A, Taube D J, Gamble S, Taube H, Satoh T, Fujii H. Science, 1998, 2800: 560-564
[6] Hay A S, Balnchard H S. Can. J. Chem., 1965, 43: 1306-1317
[7] Meunier B, de Visser S P, Shaik S. Chem. Rev., 2004, 104: 3947-3980
[8] Stone K L, Behan R K, Green M T. Proc. Nat. Acad. Sci. USA, 2006, 103: 12307-12310
[9] Solomon E I, Zhou J, Neese F, Pave1 E G. Chem. Biol., 1997, 4: 795-808
[10] Hamberg M, Oliw H, Su C. J. Biol. Chem., 1998, 273: 13080-13088
[11] Stockert A L, Shinde S S, Anderson R F, Hill R. J. Am. Chem. Soc., 2002, 124: 14554-14555
[12] Goldsmith C R, Stack T D P. Inorg. Chem., 2006, 45: 6048-6055
[13] Goldsmith C R, Cole A P, Stack T D P. J. Am. Chem. Soc., 2005, 127: 9904-9912
[14] Yin G, Danby A M, Kitko D, Carter J D, Scheper W M, Busch D H. J. Am. Chem. Soc., 2007, 129: 1512-1513
[15] Yin G, Danby A M, Kitko D, Carter J D, Scheper W M, Busch D H. J. Am. Chem. Soc., 2008, 130: 16245-16253
[16] Fiedler A T, Que L. Inorg. Chem., 2009, 48: 11038-11047
[17] Toy P H, Newcomb M, Coon M J, Vaz A D N. J. Am. Chem. Soc., 1998, 120: 9718-9718
[18] Nam W, Ho R, Valentine J S. J. Am. Chem. Soc., 1991, 113: 7052-7054
[19] Payeras A M, Ho R Y N, Fujita M, Que L. Chem. Eur. J., 2004, 10: 4944-4953
[20] Namuswe F, Kasper G D, Sarjeant A A N, Hayashi T, Krest C M, Green M T, Monne-Loccoz P, Goldberg D P. J. Am. Chem. Soc., 2008, 130: 14189-14200
[21] Jiang Y, Telser J, Goldberg D P. Chem. Commun., 2009, 6828-6830
[22] Yin G, Buchalova M, Danby A M, Perkins C M, Kitko D, Carter J D, Scheper W M, Busch D H. J. Am. Chem. Soc., 2005, 127: 17170-17171
[23] Yin G, Buchalova M, Danby A M, Perkins C M, Kitko D, Carter J D, Scheper W M, Busch D H. Inorg. Chem., 2006, 45: 3467-3474
[24] Yin G, Danby A M, Kitko D, Carter J, Scheper W, Busch D. Inorg. Chem., 2007, 46: 2173-2180
[25] Haras A, Ziegler T. Can. J. Chem., 2009, 87: 33-38
[26] Lee S H, Xu L, Park B K, Mironov Y V, Kim S H, Song Y J, Kim C, Kim Y, Kim S K. Chem. A Euro. J., 2010, 16: 4678-4685
[27] De Boer J W, Browne W R, Brinksma J, Alsters P L, Hage R, Feringa B L. Inorg. Chem., 2007, 46: 6353-6372
[28] Ottenbacher R V, Bryliakov K P, Talsi E P. Inorg. Chem., 2010, 49: 8620-8628
[29] Leeladee P, Goldberg D P. Inorg. Chem., 2010, 49: 3083-3085
[30] Xu A, Xiong H, Yin G. J. Phys. Chem. A, 2009, 113: 12243-12248
[31] Stryer L. Biochemistry, 3rd ed. New York: W H Freeman, 1988. Chapter 17
[32] Mikael T, Jerker O, Gustav D. Biochimica et Biophysica Acta, 2004, 1660: 171-199
[33] Tu Y, Wang Z, Shi Y. J. Am. Chem. Soc., 1996, 118: 9806-9807
[34] Dijksman A, Marino-Gonzalez A, Mairata P A, Arends I W C E, Sheldon R A. J. Am. Chem. Soc., 2001, 123: 6826-6833
[35] Liu R, Liang X, Dong C, Hu X. J. Am. Chem. Soc., 2004, 126: 4112-4113
[36] Yang G, Ma Y, Xu J. J. Am. Chem. Soc., 2004, 126: 10542-10543
[37] Yang G, Zhang Q, Miao H, Tong X, Xu J. Org. Lett., 2005, 7: 263-266
[38] Tong X, Xu J, Miao H. Adv. Syn. Cata., 2005, 347: 1953-1957
[39] Tong X, Xu J, Miao H, Gao J. Tetrahedron Lett., 2006, 47: 1763-1766
[40] Zhang W, Ma H, Zhou L, Sun Z, Du Z, Miao H, Xu J. Molecules, 2008, 13: 3236-3245
[41] Sheldon R A, Arends I W C E, Brink G T, Dijksman A. Green Acc. Chem. Res., 2002, 35: 774-781
[42] Anelli P L, Biffi C, Montanari F, Quici S. J. Org. Chem., 1987, 52: 2559-2562
[43] Yin G, Danby A M, Kitko D, Carter J D, Scheper W M, Busch D H. J. Am. Chem. Soc., 2007, 129: 1512-1513
[44] Yin G, Danby A M, Kitko D, Carter J D, Scheper W M, Busch D H. J. Am. Chem. Soc., 2008, 130: 16245-16253
[45] Kurahashi T, Kikuchi A, Tosha T, Shiro Y, Kitagawa T, Fujii H. Inorg. Chem., 2008, 47: 1674-1686
[46] Kurahash T, Kikuchi A, Shiro Y, Hada M, Fujii H. Inorg. Chem., 2010, 49: 6664-6672
[47] Fiedler A T, Que L. Inorg. Chem., 2009, 48: 11038-11047
[48] Xu A, Xiong H, Yin G. Chem. Eur. J., 2009, 15: 11478-11481
[49] Shi S, Wang Y, Xu A, Zhu D, Roy S B, Jackson T A, Busch D H, Yin G. Angew. Chem. Int. Ed., 2011, 50: 7321-7324
[50] Ortiz de Montellano P R Ed. Cytochrome P450: Structure, Mechanism, and Biochemistry. New York: Plenum Press, 1986
[51] Hersleth H, Ryde U, Rydberg P, Görbitz C H, Andersson K K. J. Inorg. Biochem., 2006, 100: 460-476
[52] Behan R K, Green M T. J. Inorg. Biochem., 2006, 100: 448-459
[53] De Boer J W, Brinksma J, Browne W R, Meetsma A, Alsters P L, Hage R, Feringa B L. J. Am. Chem. Soc., 2005, 127: 7990-7991
[1] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[2] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.
[3] Zhe Liu, Xiaolan Zhang, Ting Cai, Jing Yua, Kunfeng Zhao, Dannong He. Catalytic Oxidation of Formaldehyde over Manganese-Based Catalysts and the Influence of Synergistic Effect [J]. Progress in Chemistry, 2019, 31(2/3): 311-321.
[4] Guo Ruimei, Bai Jinquan, Zhang Heng, Xie Yabo, Li Jianrong. Metal-Organic Frameworks for Catalytic Oxidation [J]. Progress in Chemistry, 2016, 28(2/3): 232-243.
[5] Zhao Qian, Ge Yunli, Ji Na, Song Chunfeng, Ma Degang, Liu Qingling. Removal of Volatile Organic Compounds by Catalytic Oxidation Technology [J]. Progress in Chemistry, 2016, 28(12): 1847-1859.
[6] Wang Weitao, Yao Min, Ma Yangmin, Zhang Jin. Direct Oxidation of Liquid Benzene to Phenol with Molecular Oxygen [J]. Progress in Chemistry, 2014, 26(10): 1665-1672.
[7] Wang Meng, Hui Yonghai, Zhang Xuehua, Wei Yana, Shi Minshan, Wang Jide*. Oxidation of Tetrahydrofuran [J]. Progress in Chemistry, 2013, 25(07): 1158-1165.
[8] Ren Fangfang, Jiang Fengxing, Zhou Weiqiang, Du Yukou, Xu Jingkun. Application of Conducting Polymers/Metal Composites for C1 Molecules Electrooxidation [J]. Progress in Chemistry, 2012, (9): 1818-1836.
[9] Zhang Jun, Chen Jing, Huang Xinsong, Li Guangshe. Recent Research Progress and Applications of Nano Catalytic Materials for CO Oxidation [J]. Progress in Chemistry, 2012, 24(07): 1245-1251.
[10] Zhang Guofu, Wen Xin, Wang Yong, Mo Weimin, Ding Chengrong. Recent Advances in Oxidative Deoximation [J]. Progress in Chemistry, 2012, 24(0203): 361-369.
[11] Liu Jing Wang Zimeng Shen Jiandong Zhang Shicheng Chen Jianmin. Langmuir-Hinshelwood Model of Photocatalytic Oxidation Kinetics of Volatile Organic Pollutants [J]. Progress in Chemistry, 2009, 21(10): 2037-2043.
[12] Wang Shujun Peng Yuling. The Function of Chiral Metalloporphyrin Complex [J]. Progress in Chemistry, 2009, 21(0708): 1515-1522.
[13] . Environmental-Friendly Synthesis of Adipic Acid by Catalytic Oxidation [J]. Progress in Chemistry, 2009, 21(04): 663-671.
[14] Li Mingyan1 Zhou Chunhui1** Jorge N Beltramini2 Yu Weihua1 Fan Yongxian1. Catalytical Selective Oxidation of Glycerol [J]. Progress in Chemistry, 2008, 20(10): 1474-1486.
[15] xu haifeng, Tang Ruiren*, Gong Nianhua, Liu Changhui, Zhou Yaping. Aerobic Oxidation Reactions Catalyzed by N-Hydroxyphthalimide and Its Analogues [J]. Progress in Chemistry, 2007, 19(11): 1736-1745.