中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Self-Assembly of Protein with Polymer

He Naipu1*, Wang Rongmin2   

  1. 1. Institute of Functional Polymer, College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
    2. Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received: Revised: Online: Published:
PDF ( 1621 ) Cited
Export

EndNote

Ris

BibTeX

Protein is a class of major biomacromolecules with a unique three-dimensional spatial structures. The intramolecular cooperative non-covalent interactions of protein play a crucial role in formation of this structure. Meanwhile, self-assembly of protein with other polymers can be also induced by these interactions. The structures of polymer chain and protein play a key role in the self-assembly of protein with polymer. The changes of pH, ionic strength and temperature of solution affect the type and intensity of non-covalent interactions. The present review summaries the latest research on self-assembly of the water-soluble polymers, block copolymers, and polysaccharides with globular protein. The molecular structure of polymers and solution properties effecting on the self-assembly of protein with polymers are discussed in details. Especially, non-covalent interaction between polysaccharide and protein is a major research topic in interdisciplinary field between chemistry and biology. Understanding of non-covalent interactions between protein and other polymers is benefit to discover the nature and rule of life, and has important applications in materials science, nanotechnology, food science, etc.

Contents
1 Introduction
2 Self-assembly of water-soluble polymer with protein
2.1 Influence of the molar ratio
2.2 Influence of polymer molecular weight
3 Self-assembly of block copolymer with protein
4 Self-assembly of polysaccharide with protein
4.1 Influence of pH
4.2 Influence of ionic strength
4.3 Influence of temperature
5 Conclusions and Outlook

CLC Number: 

[1] Turgeon S L, Beaulieub M, Schmittb C, Sanchezc C. Curr. Opin. Colloid Interface Sci., 2003, 8: 401-414
[2] 黄毅(Huang Y), 黄金花(Huang J H), 谢青季(Xie Q J), 姚守拙(Yao S Z). 化学进展(Progress in Chemitry), 2008, 20: 942-950
[3] Nair L S, Laurencin C T. Prog. Polym. Sci., 2007, 32: 762-798
[4] Deming T J. Prog. Polym. Sci., 2007, 32: 858-875
[5] Chen H, Yuan L, Song W, Wu Z K, Li D. Prog. Polym. Sci., 2008, 33: 1059-1087
[6] Ikkalal O, ten Brinke G. Science, 2002, 295: 2407-2409
[7] Taubert A, Napoli A, Meier W. Curr. Opin. Chem. Biol., 2004, 8: 598-603
[8] Turgeon S L, Schmitt C, Sanchez C. Curr. Opin. Colloid Interface Sci., 2007, 12: 166-178
[9] Turgeon S L, Laneuville S I. Mod. Biopolym. Sci., 2009, 327-363
[10] 李扬眉(Li Y M), 陈志春(Chen Z C), 何琳(He L), 徐立恒(Xu L H), 林贤福(Lin X F). 化学进展(Progress in Chemitry), 2002, 14: 212-216
[11] 郭敏杰(Guo M J), 高婷(Gao T), 樊志(Fan Z), 么敬霞(Yao J X), 夏建军(Xia J J), 宓怀风(Mi H F). 中国科学: 化学(Science China Chemistry), 2010, 40: 282-290
[12] Matsudo T, Ogawa K, Kokufuta E. Biomacromolecules, 2003, 4: 1794-1799
[13] Matsudo T, Ogawa K, Kokufuta E. Biomacromolecules, 2003, 4 : 728-735
[14] Ogawa K, Nakayama A, Kokufuta E. J. Phys. Chem. B, 2003, 107: 8223-8227
[15] Topuzogullar M, Cimen N S, Mustafaeva Z, Mustafaev M. Eur. Polym. J., 2007, 43: 2935-2946
[16] Cheng H, Zhu J L, Zeng X, Jing Y, Zhang X Z, Zhuo R X. Bioconjugate Chem., 2009, 20: 481-487
[17] Yan Q, Yuan J Y, Zhang F B, Sui X F, Xie X M, Yin Y W, Wang S F, Wei Y. Biomacromolecules, 2009, 10: 2033-2042
[18] Molina I, Li S M, Martinez M B, Vert M. Biomaterials, 2001, 22: 363-369
[19] Dutta P, Shrivastava S, Dey J. Macromol. Biosci., 2009, 9: 1116-1126
[20] Blanazs A, Armes S P, Ryan A J. Macromol. Rapid Commun., 2009, 30: 267-277
[21] Aaron Lau K H, Bang J, Kim D H, Knoll W. Adv. Funct. Mater., 2008, 18: 3148-3157
[22] Wittemann A, Azzam T, Eisenberg A. Langmuir, 2007, 23: 2224-2230
[23] Miller A C, Bershteyn A, Tan W, Hammond P T, Cohen R E, Irvine D J. Biomacromolecules, 2009, 10: 732-741
[24] Simone E A, Dziubla T D, Colon-Gonzalez F, Discher D E, Muzykantov V R. Biomacromolecules, 2007, 8: 3914-3921
[25] Castelletto V, Krysmann M. Biomacromolecules, 2007, 8: 2244-2249
[26] Castelletto V, Krysmann M J, Clifton L A, Lambourne J, Noirez L. J. Phys. Chem. B, 2007, 111: 11330-11336
[27] Goodman D S. Science, 1957, 125: 1296-1297
[28] Richieri G V, Anel A, Kleinfeld A M. Biochemistry, 1993, 32: 7574-7580
[29] Kelarakis A, Castelletto V, Krysmann M J, Havredaki V, Viras K, Hamley I W. Biomacromolecules, 2008, 9: 1366-1371
[30] Chen B, Metera K, Sleiman H F. Macromolecules, 2005, 38: 1084-1090
[31] Cresce A V, Silverstein J S, Bentley W E, Kofinas P. Macromolecules, 2006, 39: 5826-5829
[32] Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W. Acc. Chem. Res., 2011, 44: 1039-1049
[33] 鲁从华(Lu C H), 罗传秋(Luo C Q), 曹维孝(Cao W X). 高分子学报(Acta Polymerica Sinica), 2002, (1): 116-119
[34] Delben F, Stefancich S. J. Food. Eng., 1997, 31: 325-346
[35] Cooper C L, Dubin P L, Kayitmazer A B, Turksen S. Curr. Opin. Colloid Interface Sci., 2005, 10: 52-78
[36] Nishinari K, Zhang H, Ikeda S. Curr. Opin. Colloid Interface Sci., 2000, 5: 195-201
[37] 马豫峰(Ma Y F), 蔡继业(Cai J Y), 杨培慧(Yang P H), 陈勇(Chen Y). 高分子材料科学与工程(Polymer Material Science and Engineering), 2005, 21: 272-275
[38] De Kruif C G, Weinbrecka F, de Vriesc R. Curr. Opin. Colloid Interface Sci., 2004, 9: 340-349
[39] Sanchez C, Renard D. Int. J. Pharm., 2002, 242: 319-324
[40] Doublier J L, Garnier C, Renard D, Sanchez C. Curr. Opin. Colloid Interface Sci., 2000, 5: 202-214
[41] Schmidt I, Cousin F, Huchon C, Boué F, Axelos M A V. Biomacromolecules, 2009, 10: 1346-1357
[42] Puppo M C, Aón M C. J. Agric. Food Chem., 1998, 46: 3039-3046
[43] Weinbreck F, de Vries R, Schrooyen P, de Kruif C G. Biomacromolecules, 2003, 4: 293-303
[44] Tobitani A, Ross-Murphy S B. Macromolecules, 1997, 30: 4855-4862
[45] Galazka V B, Smith D, Ledward D A, Dickinson E. Food Chem., 1999, 64: 303-310
[46] Weinbreck F, Tromp R H, de Kruif C G. Biomacromolecules, 2004, 5: 1437-1445
[47] Seyrek E, Dubin P L, Tribet C, Gamble E A. Biomacromolecules, 2003, 4: 273-282
[48] Dobrynin A V. Macromolecules, 2005, 38: 9304-9314
[49] Dobrynin A V. Macromolecules, 2006, 39: 9519-9527
[50] Hsiao P Y, Luijten E. Phys. Rev. Lett., 2006, 97: 148301-148304
[51] Cho J, Heuzey M C, Begin A, Carreau P J. J. Food Eng., 2006, 74: 500-515
[52] Tsuboi A, Izumi T, Hirata M, Xia J L, Dubin P L, Kokufuta E. Langmuir, 1996, 12: 6295-6303
[53] Pouzot M, Durand D, Nicolai T. Macromolecules, 2004, 37: 8703-8708
[54] Kayitmazer A B, Seyrek E, Dubin P L, Staggemeier B A. J. Phys. Chem. B, 2003, 107: 8158-8165
[55] Wang X Y, Wang Y W, Ruengruglikit C, Huang Q R. J. Agric. Food Chem., 2007, 55: 10432-10436
[56] 何乃普(He N P). 西北师范大学博士学位论文(Doctoral Dissertation of Northwest Normal University), 2010
[57] Ducel V, Saulnier P, Richard J, Boury F. Colloids Surf. B, 2005, 41: 95-102
[58] Arnaudov L N, de Vries R. Biomacromolecules, 2006, 7: 3490-3498
[59] Gosal W S, Clark A H, Ross-Murphy S B. Biomacromolecules, 2004, 5: 2408-2419
[60] Gosal W S, Clark A H, Ross-Murphy S B. Biomacromolecules, 2004, 5: 2420-2429
[61] De la Fuente M A, Singh H, Hemar Y. Trends Food Sci. Technol., 2002, 13: 262-274
[62] Karim A A, Bhat R. Trends Food Sci. Technol., 2008, 19: 644-656
[63] Najbar L V, Considine R F, Drummond C J. Langmuir, 2003, 19: 2880-2887
[64] Van der Linden E, Venema P. Curr. Opin. Colloid Interface Sci., 2007, 12: 158-165
[65] Stefani M. Biochim. Biophys. Acta, 2004, 1739: 4-25
[66] Bruinsma R, Pincus P. Curr. Opin. Solid State Mater. Sci., 1996, 1: 401-406
[67] Smith A M, Banwell E F, Edwards W R, Pandya M J, Woolfson D N. Adv. Funct. Mater., 2006, 16: 1022-1030
[68] Holder P G, Francis M B. Angew. Chem. Int. Ed., 2007, 46: 4370-4373
[69] Wang W. Int. J. Pharm., 2005, 289: 1-30
[70] Veerman C, de Schiffart G, Sagis L M C, van der Linden E. Int. J. Biol. Macromol., 2003, 33: 121-127
[71] Weijers M, Visschers R W, Nicolai T. Macromolecules, 2004, 37: 8709-8714
[72] Safinya C R. Colloids Surf. A, 1997, 128: 183-195
[73] Veerman C, Sagis L M C, Heck J, van der Linden E. Int. J. Biol. Macromol., 2003, 31: 139-146
[74] Neiser S, Draget K I, Smidsrard O. Food Hydrocolloids, 1998, 12: 127-132
[75] Neiser S, Draget K I, Smidsrd O. Food Hydrocolloids, 1999, 13: 445-458
[76] Zhao Y Y, Li F Y, Carvajal M T, Harris M T. J. Colloid Interface Sci., 2009, 332: 345-353
[77] Chen L Y, Subirade M. Biomaterials, 2005, 26: 6041-6053
[78] Hong Y H, McClements D J. J. Agric. Food Chem., 2007, 55: 5653-5660
[79] Mounsey J S, O'Kennedy B T, Fenelon M A, Brodkorb A. Food Hydrocolloids, 2008, 22: 65-73
[80] Liu Z H, Jiao Y P, Wang Y F, Zhou C R, Zhang Z Y. Adv. Drug Del. Rev., 2008, 60: 1650-1662
[81] Yu S Y, Hu J H, Pan X Y, Yao P, Jiang M. Langmuir, 2006, 22: 2754-2759
[82] Gosal W S, Ross-Murphy S B. Curr. Opin. Colloid Interface Sci., 2000, 5: 188-194
[83] Nicolai T, Durand D. Curr. Opin. Colloid Interface Sci., 2007, 12: 23-28
[84] Wang X Y, Lee J Y, Wang Y W, Huang Q R. Biomacromolecules, 2007, 8: 992-997
[85] Cousin F, Gummel J, Ung D, Boué F. Langmuir, 2005, 21: 9675-9688

[1] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[2] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[3] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[4] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[5] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[6] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[7] Yanyan Wang, Limin Chen, Siyang Li, Luhua Lai. How Intrinsically Disordered Proteins Modulate Biomolecular Condensates [J]. Progress in Chemistry, 2022, 34(7): 1610-1618.
[8] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[9] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[10] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[11] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[12] Chen Yaqiong, Song Hongdong, Wu Mao, Lu Yang, Guan Xiao. Application of Protein-Polysaccharide Complex System in the Delivery of Active Ingredients [J]. Progress in Chemistry, 2022, 34(10): 2267-2282.
[13] Jianyun Lin, Shihe Luo, Chongling Yang, Ying Xiao, Liting Yang, Zhaoyang Wang. Bio-Based Polymeric Hemostatic Material and Wound Dressing [J]. Progress in Chemistry, 2021, 33(4): 581-595.
[14] Wenjie Liu, Kaihui Liu, Yanwei Zhang, Liang Wang, Mengyi Zhang, Jing Li. The Mechanism of Glycosylation in SARS-CoV-2 Infection and Application in Drug Development [J]. Progress in Chemistry, 2021, 33(4): 524-532.
[15] Ximeng Cheng, Qingrui Zhang. Functional Protein Based Nanomaterials for Environmental Protection Application [J]. Progress in Chemistry, 2021, 33(4): 678-688.
Viewed
Full text


Abstract

Self-Assembly of Protein with Polymer