中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (01): 80-93 Previous Articles   Next Articles

• Review •

Self-Assembly Methods of Organic Conjugated Molecules

Song Shisong1, DaiYujing2*, Fan Quli1*, Huang Wei1*   

  1. 1. Jiangsu Key Lab of Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, China;
    2. Analysis & Testing Center, Jiangsu Key Laboratory of Bio-Functional Materials, Nanjing Normal University, Nanjing 210046, China
  • Received: Revised: Online: Published:
PDF ( 1534 ) Cited
Export

EndNote

Ris

BibTeX

This paper systematically introduces the research development of self-assembly methods of organic conjugated molecules, including the synthesis,self-assembly methods, photophysical properties and application of organic conjugated molecules. All kinds of self-assembly methods applicable to organic conjugated molecules are emphatically expounded. Organic photoelectric materials or devices produced by the self-assembly have broad application prospect and potential application value.

Contents
1 Introduction
2 Basic principle of self-assembly
3 Self-assembly methods of organic conjugated molecules
3.1 Self-assembly by light stimulation
3.2 Self-assembly by dispersing solvent
3.3 Self-assembly by physical adsorption
3.4 Self-assembly by evaporating solvent
3.5 Self-assembly by precipitation
3.6 Self-assembly by surfactant auxiliary
3.7 Self-assembly on substrate
3.8 Self-assembly by supramolecular recognition
4 Conclusions and outlook

CLC Number: 

[1] Lee H J, Hong J K, Goo H C. J. Biomat. Sci. Polym. E, 2002, 13 (8): 939-946
[2] Mikawa T, Masui R, Ogawa T. J. Mol. Biol., 1995, 250 (36): 471-477
[3] Salil G, Israel R, Takaya T, Fryd M. Peptides, 2002, 23 (3): 201-208
[4] Safinya C R, Colloids G, Surfaces A, Krause M, Svitova L. Physicochem. Eng. A, 1997, 128 (3): 183-189
[5] Ottova A L, Tien H T. Bioelectrochem. Bioenerg., 1997, 133 (42): 141-144
[6] Schneider J P, Pochan D J, Ozbas B. J. Am. Chem. Soc., 2002, 124 (50): 15030-15038
[7] Marty L T, Bonnot A M, Bonhomme A. Small, 2006, 64 (2): 110-115
[8] Tans S J, Dekker C. Nature, 2000, 404 (3): 834-835
[9] Chang S C, Li Z Y, Lau C N. Appl. Phys. Lett., 2003, 83 (15): 3198-3200
[10] Liu H B, Xu J L, Li Y J, Li Y L. Acc. Chem. Res., 2010, 43 (12): 1496-1508
[11] Melosh N A, Boukai A, Diana F. Science, 2003, 300 (18): 112-115
[12] Wei Z, Heiko O J. Adv. Mater., 2006, 18 (11): 1387-1392
[13] Cui S, Liu H B, Gan L B, Li Y L, Zhu D B. Adv. Mater., 2008, 20 (15): 2918-2925
[14] Zhang S G, Li G F. Biotechnol. Adv., 2002, 55 (20): 321-326
[15] Corinne L D, Thomas B, Peter S. J. Supramol. Chem., 2001, 23 (15): 39-52
[16] Bowden N B, Weck M, Choi I S. Acc. Chem. Res., 2001, 34 (3): 231-238
[17] Barrio J, Oriol L, Sánchez C, Serrano J, Cicco A, Keller P, Li M H. J. Am. Chem. Soc., 2010, 132 (11): 3762-3769
[18] Taton K S, Guire P E. Colloids Surfaces B: Biointerfaces, 2002, 123-132
[19] Gan H Y, Liu H B, Li Y J, Zhao Q, Li Y L, Wang S, Jiu T G, Wang N, He X R, Yu D P, Zhu D B. J. Am. Chem. Soc., 2005, 127 (36): 12452-12453
[20] Park S J, Kang S G, Fryd M, Saven J G, Park S. J. Am. Chem. Soc., 2010, 132 (29): 9931-9933
[21] Ren L X, Hardy C G, Tang C B. J. Am. Chem. Soc., 2010, 132 (26): 8874-8875
[22] Tung Y C, Wu W C, Chen W C. Macromol. Rapid Commun., 2006, 78 (27): 1838-1844
[23] Prasanthkumar S, Saeki A, Seki S, Ajayaghosh A. J. Am. Chem. Soc., 2010, 132 (28): 8866-8867
[24] Huang C S, Li Y L, Song Y L, Li Y J, Liu H B, Zhu D B. Adv. Mater., 2010, 22 (32): 3532-3536
[25] Huang Y Q, Fan Q L, Liu X F, Fu N N, Huang W. Langmuir, 2010, 26 (24): 19120-19128
[26] González-Rodríguez D, Janssen P G A, Martin-Rapún R, De Cat I, De Feyter S, Schenning A P H J, Meijer E W. J. Am. Chem. Soc., 2010, 132 (13): 4710-4719
[27] Hagberg E C, Goodridge B, Sheares V V. Macromolecules, 2004, 37: 3642-3650
[28] Cordas C M, Viana A S, Leupold S, Montforts F P, Abrantes L M. Electrochem. Commun., 2003, 5 (1): 36-41
[29] Pu K Y, Li K, Liu B. Chem. Mater., 2010, 24 (22): 6736-6741
[30] Mu X Y, Song W F, Zhang Y, Ye K Q, Zhang H Y, Wang Y. Adv. Mater., 2010, 22 (1): 115-122
[31] Meng Y, Gu D, Zhang F Q, Cheng L, Feng D, Wu Z X, Chen Z X, Wan Y, Andreas S, Zhao D Y. Chem. Mater., 2006, 18 (18): 4447-4464
[32] Li H B, Liu Q T, Wu L X. J. Phys. Chem. B, 2005, 109 (33): 2855-2861
[33] Li H B, Song B, Wu L X. J. Colloid Interf. Sci., 2005, 290 (5): 557-563
[34] Lu S, Liu T X, Ke L, Ma D G, Cha S G, Huang W. Macromolecules, 2005, 38 (20): 8494-8502
[35] Jagannathan R, Irvin G, Blanton T, Jagannathan S. Adv. Funct. Mater., 2006, 16 (14): 747-753
[36] Zhang X J, Yuan G D, Li Q S, Wang B, Zhang X H, Zhang R Q, Chang J C, Lee C S, Lee S T. Chem. Mater., 2008, 20 (20): 6945-6950
[37] Lei Y L, Liao Q, Fu H B, Yao J N. J. Am. Chem. Soc., 2010, 132 (6): 1742-1743
[38] Qiu Y F, Chen P L, Liu M H. J. Am. Chem. Soc., 2010, 132 (6): 1965-1967
[39] Mbenkum B N, Ortiz A D, Gu L, Aken P A, Schutz G. J. Am. Chem. Soc., 2010, 132 (31): 10671-10673
[40] Luo Z X, Yang W S, Aidong P, Ying M, Fu H M, Yao J N. J. Phys. Chem. A, 2009, 113 (35): 2467-2472
[41] Liu X F, Liu H B, Zhou W D, Zheng H Y, Yin X D, Li Y L, Guo Y B, Zhu M, Ouyang C, Zhu D B, Xia E D. Langmuir, 2010, 26 (5): 3179-3185
[42] Hu Y X, Samanta D, Parelkar S S, Hong S W, Wang Q, Russell T P, Emrick T. Adv. Funct. Mater., 2010, 20 (20): 3603-3612
[43] Liu J C, Bai H W, Wang Y J. Adv. Funct. Mater., 2010, 20 (23): 4175-4181
[44] Sun X P, Ko S H, Zhang C, Ribbe A E, Mao C. J. Am. Chem. Soc., 2009, 131 (37): 13248-13249
[45] Li K, Liu Y T, Pu K Y, Liu B. Adv. Funct. Mater., 2011, 21 (2): 202-210
[46] Shi Z Q, Li Y L, Gong H F, Liu M H, Xiao S X, Liu H B, Li H M, Xiao S Q, Zhu D B. Organic Lett., 2002, 4 (7): 1179-1182
[47] Xiao X, Wu Y G, Sun M G, Zhou J J, Bo Z S, Li L, Chan C M. J. Polym. Sci. Pol. Chem., 2008, 46 (10): 574-584
[48] Xie H L, Jie C K, Yu Z Q, Liu X B, Zhang H L, Shen Z H, Chen E Q, Zhou Q F. J. Am. Chem. Soc., 2010, 132 (23): 8071-8080
[49] Apel C L, Deamer D W, Mautner M N. Biochim. Biophys. A, 2002, 155 (9): 658-660
[50] Alessandro C, Chiara M, Nicola P. Tetrahedron Letters, 2002, 43 (21): 7311-7316
[51] Xiang J H, Zhu P X, Zeng D Y, Masuda Y. Langmuir, 2004, 20 (22): 3278-3283
[52] Valsesia A, Colpo P, Meziani T. Langmuir, 2006, 22 (4): 1763-1767
[53] Lin C, Kagan C R, Tzanetos N P, Dracopoulos V, Deimede V A. J. Am. Chem. Soc., 2009, 131 (1): 336-337
[54] Han J T, Zheng Y L, Cho J H. J. Phys. Chem. B, 2005, 109 (44): 20773-20778
[55] Yuan Z Y, Ren T Z, Azioune A. Catalysis Today, 2008, 105 (3): 647-654
[56] Huang L M, Wang Z B, Sun J, Deng Z Y. J. Am. Chem. Soc., 2010, 132 (10): 3530-3531
[57] Marty L T, Bonnot A M, Bonhomme A, Cicco A D. Small, 2006, 55 (2): 110-115

[1] Xia Yong, Yao Hongtao, Miao Zhihui, Wang Fang, Qi Zhengjian, Sun Yu. Preparation and Application of Silicone Materials Based on Click Chemistry [J]. Progress in Chemistry, 2015, 27(5): 532-538.
[2] Yang Zhenglong, Xu Xiaoli, Zhao Yuxin. Synthesis of Organic/Inorganic Hybrid Materials via Thiol-Ene/Yne Click Chemistry [J]. Progress in Chemistry, 2014, 26(06): 996-1004.
[3] Liu Peng1,2**,Tian Jun2,Liu Weimin2,Xue Qunji2. Advances in Hollow Polymeric Nanospheres* [J]. Progress in Chemistry, 2004, 16(01): 15-.