中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (01): 47-53 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Review •

Preparation of Li3V2(PO4)3 Cathode Material for Power Li-Ion Batteries

Li Yuejiao1,2, Hong Liang1, Wu Feng1,2*   

  1. 1. Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081, China;
    2. National Development Center of High Technology Green Materials, Beijing 100081, China
  • Received: Revised: Online: Published:
PDF ( 1772 ) Cited
Export

EndNote

Ris

BibTeX

A considerable amount of effort has been invested to find new cathode materials suitable for rechargeable lithium batteries, and lithium transition metal phosphates have attracted wide attention because of their high structural stability, reliability and abundant resources. Lithium vanadium phosphate (LVP) has high energy density of 500mWh/g, high electron and ionic conductivity, high theoretical charge and discharge capacity, and high charge and discharge voltage plateau. It is considered as one of the most promising cathode materials for power lithium batteries. Lithium vanadium phosphate has been prepared by some traditional synthetic methods such as solid-state reaction route, carbon thermal reduction, sol-gel method and hydrothermal synthetic method, while in recent years several new synthetic methods, such as wet coordination method, microwave solid-state synthetic method, rheological phase method, have drawn researchers’ attention. In this paper, the structure and the characters of lithium vanadium phosphate are introduced. The recent research progress on synthesis study of lithium vanadium phosphate is systematically reviewed, and the results of our research team focused on the exploration of new preparation technology for lithium vanadium phosphate in recent years are elaborated. Furthermore, the preparing techniques and the material properties for each method are compared, and the current problems as well as the corresponding research directions are discussed.

Contents
1 Introduction
2 Struture and charge/discharge principle of LVP
3 Traditional synthetic method
3.1 Solid-state reaction route
3.2 Carbon thermal reduction
3.3 Sol-gel method
3.4 Hydrothermal synthesis method
4 New synthetic method
4.1 Wet coordination method
4.2 Microwave solid-state synthetic method
4.3 Rheological phase method
4.4 Other synthetic methods
5 Conclusion

CLC Number: 

[1] Han A R, Kim T W, Park D H, Hwang S J, Choy J H. J. Phys. Chem. C, 2007, 111: 11347-11352
[2] Zama K, Kumeuchi T, Enomoto S, Daidoji T. Nec Technical Journal, 2006, 1: 68-72
[3] Zama K, Suzuki S, Kasai M, Shioya T. Nec Technical Journal, 2009, 4: 86-89
[4] Zhang L, Zhang P X, Fan Z Z, Ren X Z, Zhang D Y, Liu K. Powder Technology and Application Ⅲ, 2011, 158: 262-272
[5] Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M. Electrochim. Acta, 2010, 55: 8821-8828
[6] Xie J L, Huang X A, Zhu Z B, Dai J H. Ceram. Int., 2010, 36: 2485-2487
[7] Doan T N L, Taniguchi I. J. Power Sources, 2011, 196: 1399-1408
[8] Hong J A, Wang F, Wang X L, Graetz J. J. Power Sources, 2011, 196: 3659-3663
[9] Zhou X F, Wang F, Zhu Y M, Liu Z P. J. Mater. Chem., 2011, 21: 3353-3358
[10] Saravanan K, Balaya P, Reddy M V, Chowdari B V R, Vittal J J. Energy Environ. Sci., 2010, 3: 457-464
[11] Pan A Q, Liu J, Zhang J G, Xu W, Cao G Z, Nie Z M, Arey B W, Liang S Q. Electrochem. Commun., 2010, 12: 1674-1677
[12] Marschilok A C, Takeuchi K J, Takeuchi E S. Electrochem. Solid-State Lett., 2009, 12: A5-A9
[13] Park C, Park S B, Oh S H, Jang H, Cho W I. Bull. Korean Chem. Soc., 2011, 32: 836-840
[14] Sato M, Ohkawa H, Yoshida K, Saito M, Uematsu K, Toda K. Solid State Ionics, 2000, 135: 137-142
[15] Goodenough J B, Manivannan V, Padhi A K. J. Electrochem. Soc., 1998, 145: 1518-1520
[16] Huang B, Fan X P, Zheng X D, Lu M. J. Alloys Compd., 2011, 509: 4765-4768
[17] Jiang B Q, Hu S F, Wang M W, Ouyang X P, Gong Z Y. Rare Metals, 2011, 30: 115-119
[18] 王秋霞(Wang Q X), 马化龙(Ma H L). 矿产保护与利用(Conservation and Utilization of Mineral Resources), 2009, (5): 47-50
[19] Cahill L S, Chapman R P, Britten J F, Goward G R. J. Phys. Chem. B, 2006, 110: 7171-7177
[20] Saidi M Y, Barker J, Huang H, Swoyer J L, Adamson G. Electrochem. Solid-State Lett., 2002, 5(7): A149-A151
[21] Saidi M Y, Barker J, Huang H, Swoyer J L, Adamson G. J. Power Sources, 2003, 119: 266-272
[22] Yang G, Ji H M, Liu H D, Qian B, Jiang X F. Chem. Mater., 2010, 55: 3669-3680
[23] Padhi A K, Nanjundaswamy K S, Masquelier C, Goodenough J B. J. Electrochem. Soc., 1997, 144: 2581-2586
[24] Wang L, Jiang X Q, Li X, Pi X Q, Ren Y, Wu F. Electrochim. Acta, 2010, 55: 5057-5062
[25] Wang L, Huang Y D, Jiang R R, Jia D Z. Electrochim. Acta, 2007, 52: 6778-6783
[26] Bai Y, Wu C, Wu F, Yang L X, Wu B R. Electrochem. Commun., 2009, 11: 145-148
[27] Gao X P, Yang H X. Energy Environ. Sci., 2010, 3: 174-189
[28] Wang L, Liu J, Yang G L, Zhang X F, Yan X D, Pan X M, Wang R S. Electrochim. Acta, 2009, 54: 6451-6454
[29] Qiao Y Q, Wang X L, Zhou Y, Xiang J Y, Zhang D, Shi S J, Tu J P. Electrochim. Acta, 2010, 56: 510-516
[30] Zhai J, Zhao M S, Wang D D, Qiao Y Q. J. Alloys Compd., 2010, 502: 401-406
[31] Zhang L, Wang X L, Xiang J Y, Zhou Y, Shi S J, Tu J P. J. Power Sources, 2010, 195: 5057-5061
[32] Dai C S, Chen Z Y, Jin H Z, Hu X G. J. Power Sources, 2010, 195: 5775-5779
[33] Zhong S K, Zhao B, Li Y H, Liu Y P, Liu J Q, Li F P. Journal of Wuhan University of Technology(Materials Science Edition), 2009, 24: 343-346
[34] Fu P, Zhao Y M, Dong Y Z, An X N, Shen G P. Electrochim. Acta, 2006, 52: 1003-1008
[35] Jiang T, Wang C Z, Chen G, Chen H, Wei Y J, Li X. Solid State Ionics, 2009, 180: 708-714
[36] Chen Z Y, Dai C S, Wu G, Nelson M, Hu X G, Zhang R X, Liu J S, Xia J C. Electrochim. Acta, 2010, 55: 8595-8599
[37] Wang L J, Zhou X C, Guo Y L. Chem. Mater., 2010, 195: 2844-2850
[38] Tang A P, Wang X Y, Yang S Y, Cao J Q. J. Appl. Electrochem., 2008, 38: 1453-1457
[39] Zhu X J, Liu Y X, Geng L M, Chen L B, Liu H X, Cao M H. Chem. Mater., 2008, 179: 1679-1682
[40] Tang A P, Wang X Y, Yang S Y. Mater. Lett., 2008, 62: 3676-3678
[41] Zhou X C, Liu Y M, Guo Y L. Electrochim. Acta, 2009, 54: 2253-2258
[42] Huang J S, Yang L, Liu K Y, Tang Y F. J. Power Sources, 2010, 195: 5013-5018
[43] Fu P, Zhao Y M, An X N, Dong Y Z, Hou X M. Electrochim. Acta, 2007, 52: 5281-5285
[44] Li Y Z, Zhou Z, Ren M M, Gao X P, Yan J. Electrochim. Acta, 2006, 51: 6498-6502
[45] Li Y Z, Zhou Z, Gao X P, Yan J. Electrochim. Acta, 2007, 52: 4922-4926
[46] Zhu X J, Liu Y X, Geng L M, Chen L B. J. Power Sources, 2008, 184: 578-582
[47] Huang Y D, Li J, Jia D Z. J. Colloid Interface Sci., 2005, 286: 263-267
[48] Chen J J, Vacchio M J, Wang S J, Chernova N, Zavalij P Y, Whittingham M S. Solid State Ionics, 2008, 178: 1676-1693
[49] Chang C X, Xiang J F, Shi X X, Han X Y, Yuan L J, Sun J T. Electrochim. Acta, 2008, 54: 623-627
[50] 王联(Wang L). 北京理工大学博士论文(Doctoral Dissertation of Beijing Institute of Technology), 2009
[51] Wang L, Li X, Jiang X Q, Pan F S, Wu F. Solid State Sci., 2010, 12: 1248-1252
[52] Yang G, Liu H D, Ji H M, Chen Z Z, Jiang X F. Electrochim. Acta, 2009, 55: 2951-2957
[53] 刘丽英(Liu L Y), 姜霖琳(Jiang L L), 吴辉强(Wu H Q), 张海燕(Zhang H Y), 田彦文(Tian Y W). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2010, 39: 364-368
[54] Xiao H, Zhan H, Zhou Y H. Mater. Lett., 2004, 58: 1620-1624
[55] Sun J T, Yuan L J, Zhang K L, Wang D L. Thermochim. Acta, 2000, 343: 105-109
[56] Huang F, Yuan Z Y, Zhan H, Zhou Y H, Sun J T. Mater. Lett., 2003, 57: 3341-3345
[57] 李丽(Li L), 李国华(Li G H), 王石泉(Wang S Q), 冯传启(Feng C Q). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2010, 26: 126-131
[58] Chang C X, Xiang J F, Shi X X, Han X Y, Yuan L J, Sun J T. Electrochim. Acta, 2008, 53: 2232-2237
[59] Wang L, Zhang L C, Lieberwirth I, Xu H W, Chen C H. Electrochem. Commun., 2010, 12: 52-55

[1] Zhihua Gong, Sha Hu, Xueping Jin, Lei Yu, Yuanyuan Zhu, Shuangxi Gu. Synthetic Methods and Application of Phosphoester Prodrugs [J]. Progress in Chemistry, 2022, 34(9): 1972-1981.
[2] Jianwen Liu, Heyang Jiang, Chihang Sun, Wenbin Luo, Jing Mao, Kehua Dai. P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 803-816.
[3] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.
[4] Luo Shipeng, Huang Peiqiang. Malic acid——A Versatile Chiral Building Block in the Enantioselective Total Synthesis of Natural Products and in Synthetic Methodologies [J]. Progress in Chemistry, 2020, 32(11): 1846-1868.
[5] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[6] Xiao Zheng, Pei-Qiang Huang*. SmI2 and Titanocene-Mediated Coupling Reactions of α-Aminoalkyl Radicals and Applications to the Synthesis of Aza-Heterocycles [J]. Progress in Chemistry, 2018, 30(5): 528-546.
[7] Chengjiang Zhang, Xiaoyan Yuan, Zeli Yuan, Yongke Zhong, Zhuomin Zhang, Gongke Li. Covalent Organic Framework Materials Based on Schiff-Base Reaction [J]. Progress in Chemistry, 2018, 30(4): 365-382.
[8] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[9] Zhang Songtao, Zheng Mingbo, Cao Jieming, Pang Huan. Porous Carbon/Sulfur Composite Cathode Materials for Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2016, 28(8): 1148-1155.
[10] Yi Luocai, Ci Suqin, Sun Chengli, Wen Zhenhai. Cathode Materials of Non-Aqueous Lithium-Oxygen Battery [J]. Progress in Chemistry, 2016, 28(8): 1251-1264.
[11] Chen Jun, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen. Organic Cathode Material for Lithium Ion Battery [J]. Progress in Chemistry, 2015, 27(9): 1291-1301.
[12] Shu Xin, Li Zhaoxiang, Xia Jiangbin. Synthetic Methods for Poly(thiophene)s [J]. Progress in Chemistry, 2015, 27(4): 385-394.
[13] Liu Yuping, Xie Jian, Li Tingting, Deng Ling, Chen Changguo, Zhang Dingfei. Development of Mg-Transition Metal Complex as Cathode Materials [J]. Progress in Chemistry, 2014, 26(09): 1596-1608.
[14] Bai Ying, Li Yu, Zhong Yunxia, Chen Shi, Wu Feng, Wu Chuan. Li-Rich Transition Metal Oxide xLi2MnO3·(1-x)LiMO2 (M=Ni, Co or Mn) for Lithium Ion Batteries [J]. Progress in Chemistry, 2014, 26(0203): 259-269.
[15] Lin Ying, Ding Yin, Jiang Xiqun. Preparation and Theranostic Applications of Polymer-Inorganic Hybrid Nanospheres [J]. Progress in Chemistry, 2014, 26(0203): 450-457.