中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (01): 39-46 Previous Articles   Next Articles

• Review •

Preparation of Graphitized Carbon Hollow Spheres by Low-Temperature Catalytic Approach

Jin Quan, Liu Yingliang*, Wu Yongjian, Xie Chunlin, Xiao Yong   

  1. Department of Chemistry, Institute of Nanochemistry, Jinan University, Guangzhou 510632, China
  • Received: Revised: Online: Published:
PDF ( 2287 ) Cited
Export

EndNote

Ris

BibTeX

Graphitized carbon hollow spheres exhibit excellent properties such as low density, good thermal and chemical stability and available hollow interior, which lead to extensive attention. In this review, we summarize the latest development of synthesizing graphitized carbon hollow spheres by low-temperature (<1 000℃) catalytic method with catalysts, such as Fe, Co, Ni and so on. The mechanism of low-temperature catalytic approaches is introduced. The characterizing methods of graphitized carbon hollow spheres and their applications are presented. Additionally, the challenges of the synthesis of graphitized carbon hollow spheres are discussed, and the problems still should be resolved are pointed out.

Contents
1 Introduction
2 Preparation of graphitized carbon hollow spheres by low-temperature catalytic approaches
2.1 Template method
2.2 Solvothermal method
2.3 Microwave method
3 Explaination of the mechanism of low-temperature catalytic approaches
4 Characterization methods of graphitized carbon hollow spheres
5 Applications of graphitized carbon hollow spheres
6 Conclusions and outlook

CLC Number: 

[1] Yong Z, Lei J. Adv. Mater., 2009, 21: 1-18
[2] Iijima S. Nature, 1991, 354 (6348): 56-58
[3] Ugarte D. Nature, 1992, 359: 707-709
[4] Krishnan A, Dujardin E, Treacy M M J. Nature, 1997, 388: 451-454
[5] Ajayan P M, Nugent J M, Siegel R W, Wei B. Nature, 2000, 404: 243-245
[6] Chen X Q, Motojima S. Carbon, 1999, 37: 1817-1823
[7] Chu Y C, Xu D S, Xu C J, Dun N, Ai B Y, Zhi G L, Ji G L. Nanoscale Research Letter, 2009, 4: 971-976
[8] Hu G, Ma D, Cheng M J, Liu L, Bao X H. Chem. Commun., 2002, 1948-1949
[9] Burket C L, Rajagopalan R, Foley H C. Carbon, 2007, 45: 2307-2310
[10] Zheng M T, Liu Y L, Zhao S, He W Q, Xiao Y, Yuan D S. Inorganic Chemistry, 2010, 49: 8674-8683
[11] Hishiyama Y, Inagaki M, Kimura S, Yamada S. Carbon, 1974, 12: 249-254
[12] Zaldivar R J, Rellick G S. Carbon, 1991, 29: 1155-1163
[13] Noda T, Kato H. Carbon, 1965, 3: 289-297
[14] Inagaki M, Oberlin A, Fenton S. High Temperature High Pressures, 1977, 9: 453-460
[15] Walter E C, Beetz T, Sfeir M Y, Brus L E, Steigerwald M L. J. Am. Chem. Soc., 2006, 128: 15590-15591
[16] Zhao M S, Jian N W. Adv. Mater., 2008, 20: 1071-1075
[17] Liu J W, Xu L Q, Zhang W, Lin W J, Chen X Y, Wang Z H, Qian Y T. J. Phys. Chem. B, 2004, 108: 20090-20094
[18] Qi J, Yan S Y, Jiang Q, Liu Y, Sun G Q. Carbon, 2010, 48: 163-169
[19] Lee K T, Jung Y S, Oh S M. J. Am. Chem. Soc., 2003, 125: 5652-5653
[20] White R J, Tauer K, Antonietti M, Titirici M M. J. Am. Chem. Soc., 2010, 132: 17360-17363
[21] Luo N, Li X J, Wang X H, Yan H H, Zhang C J, Wang H T. Carbon, 2010, 48: 3858-3863
[22] Sevilla M, Sanchis C, Valdes-Solis T, Morallon E, Fuertes A B. Carbon, 2008, 46: 931-939
[23] Yang S J, Cho J H, Oh G H, Nahm K S, Park C R. Carbon, 2009, 47: 1585-1591
[24] Lu A H, Li W C, Hao G P, Spliethoff B, Bongard H J, Schaack B B, Schuth F. Angew. Chem. Int. Ed., 2010, 49: 1615-1618
[25] Garvie L A J. Carbon, 2006, 44: 158-160
[26] Li G D, Guo C L, Sun C H, Ju Z C, Yang L S, Xu L Q, Qian Y T. J. Phys. Chem. C, 2008, 112: 1896-1900
[27] Xiong J Y, Xie Y, Li Z Q, Wu C Z, Zhang R. Chem. Commun., 2003, (7): 904-905
[28] Chen K, Wang C L, Ma D, Huang W X, Bao X H. Chem. Commun., 2008, 24: 2765-2767
[29] Oberlin A. Carbon, 2002, 40: 7-24
[30] Hung C C. Carbon, 1995, 33: 315-322
[31] 李玉敏(Li Y M). 炭素(Carbon), 1982, 2: 18-20
[32] Dhakate S R, Mathur R B, Bahl O P. Carbon, 1997, 35: 1753-1756
[33] Oya A, Takabatake M, Otani S, Marsh H. Fuel, 1984, 63: 747-751
[34] Oya A, Otani S. Carbon, 1978, 16: 153-154
[35] Zheng M T, Liu Y L, Jiang K M, Xiao Y, Yuan D S. Carbon, 2010, 48: 1224-1233
[36] Sevilla M, Fuertes A B. Carbon, 2006, 44: 468-474
[37] Xiao Y, Liu Y L, Cheng L Q, Yuan D S, Zhang J X, Gu Y L, Sun G H. Carbon, 2006, 44: 1589-1591
[38] 王茂章(Wang M Z), 杨全红(Yang Q H), 成会明(Cheng H M). 炭素技术(Carbon Techniques), 2001, l: 23-28
[39] Franklin R E. Acta Crystallographica, 1951, 4: 253-261
[40] 稻垣道夫(Dao H D F), 刘洪波(Liu H B). 炭素技术(Carbon Techniques), 1991, 6: 19-24
[41] 稻垣道夫(Dao H D F), 刘洪波(Liu H B). 炭素技术(Carbon Techniques), 1991, 5: 38-43
[42] Inagaki M, Oberlin A F. High Temperature High Pressures, 1977, 9: 453-460
[43] Oya A, Otani S. Carbon, 1979, 17: 125-129
[44] Weisweiler W, Subramanian N, Terwiesch B. Carbon, 1971, 9: 755-761
[45] Zaldivar R J, Rellick G S. Carbon, 1991, 29: 1155-1163
[46] Noda T, Kato H. Carbon, 1965, 3: 289-297
[47] Yoshio M, Wang H Y, Fukuda K J. Angew. Chem., 2003, 115: 4335-4338
[48] 程立强(Cheng L Q), 刘应亮(Liu Y L), 张静娴(Zhang J X), 袁定胜(Yuan D S), 徐常威(Xu C W), 孙广辉(Sun G H). 化学进展(Progress in Chemistry), 2006, 18: 1298-1304
[49] Lu A H, Li W C, Salabas E L, Spliethoff B, Schuth F. Chem. Mater., 2006, 18: 2086-2094
[50] Huang W C, Chun H H, Ping L K, Chien T H, Hsisheng T. Carbon, 2011, 49: 895-903
[51] Zhong Z Y, Xiong Z T, Sun L F, Luo J Z, Chen P, Wu X, Lin J, Tan K L. J. Phys. Chem. B, 2002, 106: 9507-9513
[52] Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M. Angew. Chem., 2006, 118: 7221-7224

[1] Ruren Xu, Jihong Yu, Wenfu Yan. Goals and Major Scientific Issues in Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1017-1048.
[2] Chao Xie, Bo Zhou, Ling Zhou, Yujie Wu, Shuangyin Wang. Defect with Catalysis [J]. Progress in Chemistry, 2020, 32(8): 1172-1183.
[3] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
[4] Yang Wu, Zaiyu Wang, Xiangyi Meng, Wei Ma. Morphology Analysis of Organic Solar Cells with Synchrotron Radiation Based Resonant Soft X-Ray Scattering [J]. Progress in Chemistry, 2017, 29(1): 93-101.
[5] Fu Chao, Zhu Yutian, Shi Dean. Separation and Characterization of Block Copolymers by Liquid Chromatography at the Critical Condition [J]. Progress in Chemistry, 2014, 26(01): 140-151.
[6] Li Shi, Li Minghui, Zhai Shangru, Song Yu, Zhai Bin, An Qingda. Designed Synthesis and Catalytic Applications of Magnetic Solid Acids [J]. Progress in Chemistry, 2013, 25(0203): 233-247.
[7] L? Jitao, Zhang Shuzhen* . Methods for Separation and Analysis of Nanomaterials in the Environment [J]. Progress in Chemistry, 2012, 24(12): 2374-2383.
[8] Ge Yujun, Chi Cheng, Wu Rong, Guo Xia, Zhang Qiao, Yang Jian. Gold Nanorods-Based Core-Shell Nanostructures: Synthesis, Characterization and Optical Properties [J]. Progress in Chemistry, 2012, 24(05): 776-783.
[9] . Synthesis, Characterization and Application of Phosphorus-Containing Derivatives of Chitosan [J]. Progress in Chemistry, 2010, 22(05): 938-947.
[10] . Characterization of Polymers by High Performance Liquid Chromatography [J]. Progress in Chemistry, 2010, 22(04): 706-712.
[11] Hu Xiangzheng Liu Anjun. Preparation and Characterization of Polymers Containing Cholic Acid Moiety [J]. Progress in Chemistry, 2009, 21(6): 1304-1311.
[12] Lv Jingmei Cheng Xuan. Crystalline Structures and Characterizations of Porous Silicon [J]. Progress in Chemistry, 2009, 21(09): 1820-1826.
[13] . Theories and Methods of Ecological Risk Assessment [J]. Progress in Chemistry, 2009, 21(0203): 350-358.
[14] Wang Peng, Ding Yunqiao, Feng Shengyu**, Zhang Jie. N,S-Containing Functional Polysilanes [J]. Progress in Chemistry, 2008, 20(12): 1903-1908.
[15] Wang Yang|Yan Zhipeng|Chen Fengqiu** Zhan Xiaoli. Nanotechnology in Heterogeneous Catalysis [J]. Progress in Chemistry, 2008, 20(09): 1263-1269.