中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (01): 173-181 Previous Articles   Next Articles

• Review •

Carrier Materials of Mesenchymal Stem Cells Expansion

Zhao Shuang1, Zhao Yanyan1, Meng Hengxing2, Li Qian2, Yin Yuji1*   

  1. 1. Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 30007;
    2. Union Stem Cell & Gene Engineering CO. LTD., Tianjin 300384, China
  • Received: Revised: Online: Published:
PDF ( 1217 ) Cited
Export

EndNote

Ris

BibTeX

Mesenchymal stem cell (MSC) is an important cell source of cell therapy and tissue engineering because of its characteristics of self-renewal, multi-differentiation potential, easily isolated and cultured in vitro. Expansion of MSCs in vitro is a necessary step in clinical application of MSCs since it is impossible to get enough MSCs directly from donors. Namely, how to culture MSCs in large-scale is the key factor to limit its application. The methodology of 3-D dynamic culture of anchorage-dependent cells provides an important way for expansion of MSCs in vitro. This review intends to overview the current progress in the MSCs expansion field and discusses the main events that have occurred along the way. Gelatin, alginate, chitosan and some other polysaccharide carrier materials used for 3-D culture of mammalian cells and MSCs are summarized and discussed. The surface modification methodologies of the microcarriers are also presented. Furthermore, some new carrier materials used for stem cells expansion are introduced. The technical advances together with the ever increasing knowledge and experience in the field of carrier materials preparation and MSCs proliferation/expansion characteristics will lead to the realization of the full potential of 3-D dynamic MSCs culture in the future.

Contents
1 Intruduction
2 Conventional carriers of animal cell culture
2.1 Gelatin microcarriers
2.2 Alginate microcarriers
2.3 Chitosan microcarriers
2.4 Other polysaccharide carriers
3 Novel stem cells carriers
4 Prospect

CLC Number: 

[1] 裴雪涛 (Pei X T), 刘大庆 (Liu D Q). 中国修复重建外科杂志 (Chinese Journal of Reparative and Reconstructive Surgery), 2006, 20: 344-348
[2] Ulloa-Montoya F, Verfaillie C M, Hu W S. Journal of Bioscience and Bioengineering, 2005, 100: 12-27
[3] Brinchmann J E. Journal of the Neurological Sciences, 2008, 265: 127-130
[4] Croft A, Przyborski S. Current Anaesthesia & Critical Care, 2004, 15: 410-417
[5] Hernández R M, Orive G, Murua A, Pedraz J L. Advanced Drug Delivery Reviews, 2010, 62: 711-730
[6] Pountos I, Corscadden D, Emery P, Giannoudis P V. Injury, 2007, 38: S23-S33
[7] Frith J E, Thomson B, Genever P G. Tissue Engineering Part C: Methods, 2010, 16: 735-749
[8] 王常勇 (Wang C Y). 生物医学工程与临床 (Biomedical Engineering and Clinical), 2002, 6: 51-54
[9] Dawson E, Mapili G, Erickson K, Taqvi S, Roy K. Advanced Drug Delivery Reviews, 2008, 60: 215-228
[10] Schop D, Janssen F, Borgart E, de Bruijn J, van Dijkhuizen-Radersma R. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2: 126-135
[11] 过琴媛(Guo Q Y), 王辉(Wang H). 微生物学免疫学进展(Progress in Microbiology and Immunology), 2007, 35: 73-75
[12] Brun-GraeppiA K, Richard C, Bessodes M, Scherman D, Merten O W. Journal of Controlled Release, 2011, 149: 209-224
[13] 王忆娟 (Wang Y J), 刘守信 (Liu S X), 房喻 (Fang Y), 黄沙 (Huang S), 金岩 (Jin Y), 姜宇 (Jiang Y). 高等学校化学学报 (Chemical Journal of Chinese Universities), 2007, 28: 1776-1780
[14] Huang S, Wang Y, Deng T, Jin F, Liu S, Zhang Y, Feng F. Journal of Alloys and Compounds, 2008, 460: 639-645
[15] Mi F L. Biomacromolecules, 2005, 6: 975-987
[16] Jin J, Song M, Hourston D J. Biomacromolecules, 2004, 5: 162-168
[17] Sisson K, Zhang C, Farach-Carson M C, Chase D B, Rabolt J F. Biomacromolecules, 2009, 10: 1675-1680
[18] Lau T T, Wang C, Wang D A. Composites Science and Technology, 2010, 70: 1909-1914
[19] Wang C, Gong Y, Lin Y, Shen J, Wang D A. Acta Biomaterialia, 2008, 4: 1226-1234
[20] Bratt-Leal A M, Carpenedo R L, Ungrin M D, Zandstra P W, McDevitt T C. Biomaterials, 2011, 32: 48-56
[21] Eibes G, dos Santos F, Andrade P Z, Boura J S, Abecasis M, da Silva C L, Cabral J. Journal of Biotechnology, 2010, 146: 194-197
[22] Yang Y, Rossi F, Putnins E E. Biomaterials, 2007, 28: 3110-3120
[23] Sart S, Schneider Y J, Agathos S N. Journal of Biotechnology, 2010, 150: 149-160
[24] Draget K I, Strand B, Hartmann M, Valla S, Smidsrod O, Skjak-Braek G. International Journal of Biological Macromolecules, 2000, 27: 117-122
[25] Simpson N E, Stabler C L, Simpson C P, Sambanis A, Constantinidis I. Biomaterials, 2004, 25: 2603-2610
[26] Darrabie M D, Kendall W F, Opara E C. Biomaterials, 2005, 26: 6846-6852
[27] Mazumder M A J, Shen F, Burke N A D, Potter M A, Stöver H D H. Biomacromolecules, 2008, 9(9): 2292-2300
[28] Gardner C M, Burke N A D, Stöver H D H. Langmuir, 2010, 26: 4916-4924
[29] Maguire T, Novik E, Schloss R, Yarmush M. Biotechnology and Bioengineering, 2006, 93: 581-591
[30] Wang N, Adams G, Buttery L, Falcone F H, Stolnik S. Journal of Biotechnology, 2009, 144: 304-312
[31] Chayosumrit M, Tuch B, Sidhu K. Biomaterials, 2010, 31: 505-514
[32] Endres M, Wenda N, Woehlecke H, Neumann K, Ringe J, Erggelet C, Lerche D, Kaps C. Acta Biomaterialia, 2010, 6: 436-444
[33] Li X, Liu T, Song K, Yao L, Ge D, Bao C, Ma X, Cui Z. Biotechnology Progress, 2006, 22: 1683-1689
[34] Mitalipova M M, Rao R R, Hoyer D M, Johnson J A, Meisner L F, Jones K L, Dalton S, Stice S L. Nature Biotechnology, 2005, 23: 19-20
[35] Ashton R S, Banerjee A, Punyani S, Schaffer D V, Kane R S. Biomaterials, 2007, 28: 5518-5525
[36] 刘成圣(Liu C S), 陈西广 (Chen X G), 刘晨光 (Liu C G), 刘万顺 (Liu W S), 郎刚华 (Lang G H). 海洋科学 (Marine Science), 2000, 24: 20-23
[37] Pillai C, Paul W, Sharma C P. Progress in Polymer Science, 2009, 34: 641-678
[38] Lu G, Zhu L, Kong L, Zhang L, Gong Y, Zhao N, Zhang X. Tsinghua Science & Technology, 2006, 11: 427-432
[39] Lu G, Sheng B, Wei Y, Wang G, Zhang L, Ao Q, Gong Y, Zhang X. European Polymer Journal, 2008, 44: 2820-2829
[40] Chen X G, Liu C S, Liu C G, Meng X H, Lee C M, Park H J. Biochemical Engineering Journal, 2006, 27: 269-274
[41] García Cruzl D M, Escobar Ivirico1 J L, Gomes M M, Gómez Ribelles J L, S'anchez M S, Reis R L, Mano J F. Journal of Tissue Engineering and Regenerative Medicine, 2008, 2: 378-380
[42] Li X, Yang Z, Zhang A. Biomaterials, 2009, 30: 4978-4985
[43] Yang Z, Duan H, Mo L, Qiao H, Li X. Biomaterials, 2010, 31: 4846-4854
[44] Oh Steve K W, Chen A K, Mok Y, Chen X, Lim U. Stem cell research, 2009, 2: 219-230
[45] Kobayashi N, Okitsu T, Maruyama M, Totsugawa T, Kosaka Y, Hayashi N, Nakaji S, Tanaka N. Transplantation Proceedings, 2003, 35: 443-444
[46] Frauenschuh S, Reichmann E, Ibold Y, Goetz P M, Sittinger M, Ringe J. Biotechnology Progress, 2007, 23: 187-193
[47] Nie Y, Bergendahl V, Hei D J, Jones J M, Palecek S P. Biotechnology Progress, 2009, 25: 20-31
[48] 吴清法(Wu Q F), 吴祖泽 (Wu Z Z), 董波 (Dong B), 王立生 (Wang L S). 中国实验血液学杂志(Journal of Experimental Hematology), 2003, 11: 15-21
[49] Zhang J, Skardal A, Prestwich G D. Biomaterials, 2008, 29: 4521-4531
[50] Bancel S, Hu W S. Biotechnology Progress, 1996, 12: 398-402
[51] Doran M R, Frith J E, Prowse A B J, Fitzpatrick J, Wolvetang E J, Munro T P, Gray P P, Cooper-White J J. Biomaterials, 2010, 31: 5137-5142
[52] Konagaya S, Kato K, Nakaji-Hirabayashi T, Iwata H. Biomaterials, 2011, 32: 992-1001
[53] Prestwich G D. Journal of Controlled Release, 2011, doi: 10.1016/j.jconrel.2011.04.00
[54] Phillips J E, Petrie T A, Creighton F P, García A J. Acta Biomaterialia, 2010, 6: 12-20

[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[5] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[6] Zhicheng Fu, Jiaxi Xu. Synthesis of Oxetanes [J]. Progress in Chemistry, 2021, 33(6): 895-906.
[7] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[8] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[9] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[10] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[11] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[12] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[13] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[14] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.
[15] Dongdong Zha, Bin Guo, Bengang Li, Peng Yin, Panxin Li. Chemical and Physical Mechanism of Water Resistance for Thermoplastic Starch [J]. Progress in Chemistry, 2019, 31(1): 156-166.