中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (01): 157-162 Previous Articles   Next Articles

• Review •

Biocathodes in Microbial Fuel Cells

Chen Lixiang, Xiao Yong, Zhao Feng*   

  1. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
  • Received: Revised: Online: Published:
PDF ( 1831 ) Cited
Export

EndNote

Ris

BibTeX

Microbial fuel cells (MFCs) produce electricity,which is clean and renewable energy,through degradation of pollutants in wastewater by microorganism.MFC biocathode refers to microorganisms attaching on electrode surface to form biofilm while electron transferred from cathode to microorganisms via bioelectrochemistry reactions. This review introduces the classification of biocathodes based on aerobic and anaerobic conditions, biofilm community, electrode materials, separation membranes, and present the main applications in pollutant removal and recover as well as the possible future research directions.

Contents
1 Introduction
2 Biocathode types
2.1 Aerobic biocathodes
2.2 Anaerobic biocathodes
3 Biofilm
4 Electrode materials
5 Separation
6 Biocathode applications
6.1 Dye decolouration
6.2 Biohydrogen production
6.3 Heavy metal removal
6.4 Denitrification of wastewater
6.5 Dechlorination of wastewater
7 Outlook

CLC Number: 

[1] 卢娜(Lu N), 周顺桂(Zhou S G), 倪晋仁(Ni J R). 化学进展(Progress in Chemistry), 2008, 20: 1233-1240
[2] Zhao F, Slade R C T, Varcoe J R. Chem. Soc. Rev., 2009, 38: 1926-1939
[3] Zhao F, Harnisch F, Schrorder U, Scholz F, Bogdanoff P, Herrmann I. Environ. Sci. Technol., 2006, 40: 5193-5199
[4] Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I. Electrochem. Commun., 2005, 7: 1405-1410
[5] Hasvold O, Henriksen H, Melvr E, Citi G, Johansen B, Kjnigsen T, Galetti R. J. Power Sources, 2007, 65: 253-261
[6] Bergel A, Féron D, Mollica A. Electrochem. Commun., 2005, 7: 900-904
[7] ChungK, FujikiI, Okabe S. Bioresource Technolog., 2011, 102: 355-360
[8] 毛艳萍(Mao Y P), 蔡兰坤(Cai L K), 张乐华(Zhang L H), 侯海萍(Hou H P), 黄光团(Huang G T), 刘勇弟(Liu Y D). 化学进展(Progress in Chemistry), 2009, 21: 1672-1677
[9] Kontani R, Tsujimura S, Kano K. Bioelectrochem., 2009, 76: 10-13
[10] Clauwaert P, van Der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W. Environ. Sci. Technol., 2007, 41: 7564-7569
[11] Zhang J N, Zhao Q L, Aelterman P, You S J, Jiang J Q. Biotechnol. Lett., 2008, 30: 1771-1776
[12] 谢珊(Xie S), 陈阳(Chen Y), 梁鹏(Liang P). 环境科学(Environmental Science), 2010, 31: 1601-1606
[13] Wu X E, Zhao F, Rahunen N, Varcoe J R, Rossa C A. Angew. Chem. Int. Ed., 2011, 50: 427-430
[14] HeZ, AngenentLT. Electroanalysis, 2006, 18: 2009-2015
[15] Lefebvre O, Al-Mamun A, Ng H Y. Water Sci. Technol., 2008, 58: 881-885
[16] Cao X X, Huang X, Liang P, Boon N, Fan M Z, Zhang L, Zhang X Y. Energy Environ. Sci., 2009, 2: 498-501
[17] Virdis B, Read S T, Rabaey K, Rozendal R A, Yuan Z, Keller J. Bioresour. Technol., 2011, 102: 334-341
[18] Erable B, Vandecandelaere I, Faimali M, Delia M L, Etcheverry L, Vandamme P, Bergel A. Bioelectrochem., 2010, 78: 51-56
[19] Mao Y, Zhang L, Li D, Shi H, Liu Y, Cai L. Electrochim. Acta, 2010, 55: 7804-7808
[20] Chen G W, Choi S J, Lee T H, Lee G Y, Cha J H, Kim C W. Appl. Microbiol. Biotechnol., 2008, 79: 379-388
[21] Cournet A, Délia M L, Bergel A, Roques C, Bergé M. Electrochem. Commun., 2010, 12: 505-508
[22] Rabaey K, Read S T, Clauwaert P, Reguia S, Bond P L, Blackall L L, Keller J. ISME J., 2008, 2: 1-9
[23] Freguia S, Tsujimura S, Kano K. Electrochim. Acta, 2010, 55: 813-818
[24] Gregory K B, Lovley D R. Environ. Sci. Technol., 2005, 39: 8943-8947
[25] Park D H, ZeikusJ G. J. Bacteriol., 1999, 181: 2403-2410
[26] Cheng S A, Xing D F, Call D F. Environ. Sci. Technol., 2009, 43: 3953-3958
[27] Cheng K Y, Ho G, Ruwisch R C. Environ. Sci. Technol., 2010, 44: 518-525
[28] You S J, Ren N Q, Zhao Q L, Wang J Y, Yang F L. Fuel Cells, 2009, 9: 588-596
[29] Tandukar M, Huber S J, Onodera T, Pavlostathis S G. Environ. Sci. Technol., 2009, 43: 8159-8165
[30] Steinbusch K J, Hamelers H V, Schaap J D, Kam-Pman C, Buisman C J. Environ. Sci. Technol., 2010, 44: 513-517
[31] Clauwaert P, Rabaey K, Aelterman P, Liesje D S, Haip H T, Pascal B, Nico B, Willy V. Environ. Sci. Technol., 2007, 41: 3354-3360
[32] Liu X W, Sun X F, Huang Y X, Sheng G P, Wang S G, Yu H Q. Energy Environ. Sci., 2011, 4: 1422-1427
[33] Virdis B, Rabaey K, Rozendal R A, Yuan Z G, Keller J. Water Res., 2010, 44: 2970-2980
[34] Aulenta F C A, Majone M, Panero S, Reale P, Rossetti S. Environ. Sci. Technol., 2008, 42: 6185-6190
[35] Aulenta F, Reale P, Canosa A, Rossetti S, Panero S, Majone M. Biosens. Bioelectron., 2010, 25: 1796-1802
[36] Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioresour. Technol., 2010, 101: 3085-3090
[37] Rozendal R A, Jeremiasse A W, Hamelers H V M, Buisman C J N. Environ. Sci. Technol., 2008, 42: 629-634
[38] Jeremiasse A W, Hamelers H V M, Buisman C J N. Bioelectrochem., 2010, 78: 39-43
[39] Xie S, Liang P, Chen Y, Xia X, Huang X. Bioresour. Technol., 2011, 102: 348-354
[40] Gregory K B, Bond D R, Lovley D R. Environ. Microbiol., 2004, 6: 596-604
[41] Dumas C, Basseguy R, Bergel A. Electrochim. Acta, 2008, 53: 2494-2500
[42] Thrash J C, Trump J I V, Weber K A, Miller E, Achenbach L A, Coates J D. Environ. Sci. Technol., 2007, 41: 1740-1746
[43] Strycharz S M, Woodard T L, Johnson J P. Appl. Environ. Microbiol., 2008, 74: 5943-5947
[44] Freguia S, Rabaey K, Yuan Z G, Keller J. Water Res., 2008, 42: 1387-1396
[45] Liu X W, Sun X F, Huang Y X, Sheng G P, Zhou K, Zeng R J, Dong F, Wang S G, Xu A W, Tong Z H. Water Res., 2010, 44: 5298-5305
[46] Wang X, Feng Y, Wang E, Li C. J. Biotechnol., 2008, 136: s662
[47] Li W W, Sheng G P, Liu X W, Yu H Q. Bioresource Technology, 2011, 102: 244-252
[48] Zhao F, Rahunen N, Varcoe J R, Roberts A J, Avignone-Rossa C, Thumser A E, Slade R C T. Biosens. Bioelectron., 2009, 24: 1931-1936
[49] Heijne T A, Strik D, Hamelers H V M, Buisman C J N. Environ. Sci. Technol., 2010, 44: 7151-7156
[50] Huang L P, Chen J W, Quan X, Yang F L. Bioprocess Biosys. Eng., 2010, 33: 937-945
[51] 毕哲(Bi Z), 胡勇有(Hu Y Y), 孙健(Sun J). 环境科学学报(Acta Scientiae Circumstantiae), 2009, 29: 1635-1642
[52] Sun J, Bi Z, Hou B. Water Res., 2011, 45: 283-291
[53] Lovley D R. Nat. Rev. Microbiol., 2006, 4: 497-508
[54] Jiang XC, Hu J S, Fitzgerald L A, Biffinger J C, Xie P, Ringeisen B R, Lieber C M. P. Natl. Acad. Sci., 2010, 107: 16806-16810
[55] El-Naggar M Y, Wanger G, Leung K M, Yuzvinsky T D, Southam G, Yang J, Lau W M, Nealson K H, Gorby Y A. P. Natl. Acad. Sci., 2010, 107: 18127-18131
[56] Hartshorne R S, Reardon C L, Ross D, Nuester J, Clarke T A, Gates A J, Mills P C, Fredrickson J K, Zachara J M, Shi L, Beliaev A S, Marshall M J, Tien M, Brantley S, Butt J N, Richardson D J. P. Natl. Acad. Sci., 2009, 106: 22169-22174
[57] RabaeyK, RozendalRA. Nat. Rev. Microbio., 2010, 8: 706-716

[1] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[2] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[3] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[4] Xiaolin Liu, Xiya Yang, Hailong Wang, Kang Wang, Jianzhuang Jiang. Organic Compounds as Electrode Materials for Rechargeable Devices [J]. Progress in Chemistry, 2021, 33(5): 818-837.
[5] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[6] Shaoming Qiao, Naibao Huang, Zhengyuan Gao, Shixian Zhou, Yin Sun. Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2019, 31(8): 1177-1186.
[7] Rui Ding, Feng Zhao. Intimate Coupling of Photocatalysis and Biodegradation to Synchronously Degrade Pollutants [J]. Progress in Chemistry, 2017, 29(9): 1154-1158.
[8] Yongming Zhu, Yunpeng Jiang, Huili Hu*. Preparation and Application of Nanometer NCS in Electrochemical Energy Conversion and Storage [J]. Progress in Chemistry, 2017, 29(11): 1422-1434.
[9] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[10] Zhuang Shuxin, Lv Jianxian, Lu Mi, Liu Yimin, Chen Xiaobin. Preparation and Applications of Perovskite-Type Oxides as Electrode Materials for Solid Oxide Fuel Cell and Metal-Air Battery [J]. Progress in Chemistry, 2015, 27(4): 436-447.
[11] Jin Yi, Sun Xin, Yu Yan, Ding Chuxiong, Chen Chunhua, Guan Yibiao. Research Progress in Sodium-Ion Battery Materials for Energy Storage [J]. Progress in Chemistry, 2014, 26(04): 582-591.
[12] Zhang Linchao, Chen Chunhua. Electrode Materials for Lithium Ion Battery [J]. Progress in Chemistry, 2011, 23(0203): 275-283.
[13] He Fei, Peng Ranran, Yang Shangfeng. Reversible Solid Oxide Cell with Proton Conducting Electrolyte: Materials and Reaction Machanism [J]. Progress in Chemistry, 2011, 23(0203): 477-486.
[14] Wen Zubiao, Tian Shu, Qu Qunting, Wu Yuping. Hybrid Supercapacitors Based on Intercalation Compounds as Positive Electrodes [J]. Progress in Chemistry, 2011, 23(0203): 589-594.
[15] Sun Wanning Ying Jierong Huang Zhenlei Jiang Changyin Wan Chunrong. Organic Sulfide Electrode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2009, 21(09): 1963-1968.
Viewed
Full text


Abstract

Biocathodes in Microbial Fuel Cells