中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (01): 122-130 Previous Articles   Next Articles

• Review •

Silica Based Stationary Phases for High Performance Liquid Chromatography

Zhao Beibei1, Zhang Yan1, Tang Tao1,2, Wang Fengyun1*, Zhang Weibing2,3, Li Tong2   

  1. 1. Chemical Engineering Institute, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Dalian Elite Analytical Instruments Co., Ltd., Dalian 11602;
    3. Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
  • Received: Revised: Online: Published:
PDF ( 1810 ) Cited
Export

EndNote

Ris

BibTeX

High performance liquid chromatography is not only a useful analytical technique, but also an effective preparation method. The availability of a variety of stationary phases for column has been a key factor in the development of HPLC as a major scientific tool. With the most desirable compromise of properties that provide for effective and reproducible separations, silica has been the most widely used HPLC packing material. The silica microspheres are synthesized by various methods, including spray drying, sol-gel, polymerization induced colloid aggregation and templating methods. In recent years, atypical types of silica are prepared and applied in HPLC, such as sub-2μm silica particles, superficially porous silica particles, bimodal silica particles, mesoporous silica particles, organic/silica hybrid particles, etc. As a result, unique separation properties that enlarge the capabilities of HPLC methods have been achieved, such as ultrahigh-pressure liquid chromatography based on sub-2μm silica particles, fast liquid chromatography based on superficially porous silica particles, high temperature liquid chromatography based on organic/silica hybrid particles. Moreover, novel stationary phase can be obtained by chemical bonding or polymer modification of silica surface, such as chiral stationary phase, temperature-responsive stationary phase and restricted access materials. In this paper, the preparation methods and modification modes of silica particles are introduced, as well as the characterization methods of HPLC stationary phase. The applications of silica packing material in HPLC and its developing trends are also outlined.

Contents
1 Introduction
2 Preparation methods of silica
2.1 Spray drying method
2.2 Polymerization induced colloid aggregation method
2.3 One-step catalytic sol-gel method
2.4 Two-step catalytic sol-gel method
2.5 Templating method
2.6 Preparation methods of atypical silica
2.7 Preparation methods of organic/silica hybrid particles
3 Modification methods and characterization methods of silica
3.1 Modification of silica
3.2 Characterization of silica based packing materials
4 Application of silica based packing materials
4.1 Application of atypical silica
4.2 Application of organic/silica hybrid particles
5 Conclusions and outlook

CLC Number: 

[1] Unger K K, Skudas R, Schulte M M. J. Chromatogr. A, 2008, 1184: 393-415
[2] Nawrocki J, Dunlap C, Mccormick A, Carr P W. J. Chromatogr. A, 2004, 1028: 1-30
[3] Paek C, McCormick A V, Carr P W. J. Chromatogr. A, 2010, 1217: 6475-6483
[4] Huai Q Y, Wang X L, Zuo Y M. Chromatographia, 2002, 55: 637-645
[5] Kirkland J J, DeStefano J J. J. Chromatogr. A, 2006, 1126: 50-57
[6] Ai F, Li L, Ng S C, Tan T T Y. J. Chromatogr. A, 2010, 1217: 7502-7506
[7] Unger K K, Kumar D, Grun M, Buchel G, Ludtke S, Adam T, Schumacher K, Renker S. J. Chromatogr. A, 2000, 892: 47-55
[8] Uzun L, Yavuz H, Say R. Ind. Eng. Chem. Res. , 2004, 43: 6507-6513
[9] Haginaka J. J. Chromatogr. B, 2008, 866: 3-13
[10] West C, Elfakir C, Lafosse M. J. Chromatogr. A, 2010, 1217: 3201-3216
[11] Davies N H, Euerby M R, McCaller D V. J. Chromatogr. A, 2008, 1178: 71-78
[12] Pelletier S, Lucy C A. J. Chromatogr. A, 2006, 1125: 189-194
[13] Pesek J J, Matyska M T. J. Sep. Sci. , 2009, 32: 3999-4011
[14] 佟巍(Tong W), 张养军(Zhang Y J), 秦伟捷(Qin W J), 钱小红(Qian X H). 色谱(Chinese of Chromatography), 2010, 28(10): 915-922
[15] Qiu H D, Liang X J, Sun M, Jiang S X. Anal. Bioanal. Chem., 2011, 399: 3307-3322
[16] Kang Y J, Shan W, Wu J Y. Chem. Mater. , 2006, 18(7): 1861-1866
[17] Zhao L, Yu J G, Guo R, Cheng B. Key Eng. Mater., 2005, 280/283: 1153-1156
[18] 张庆合(Zhang Q H). 大连化学物理研究所博士后出站报告(Post Doctoral Dissertation of Dalian Institute of Chemical Physics Chinese of Academy of Sciences), 2002
[19] Chang S M, Lee M, Kim W S. J. Colloid Interface Sci. , 2005, 286: 536-542
[20] Rahman I A, Vejayakumaran P, Sipaut C S, Ismail J, Baker M A, Adnan R, Chee C K. Ceram. Int. , 2006, 32: 691-699
[21] Wang X D, Shen Z X, Sang T, Cheng X B, Li M F, Chen L Y. J. Colloid Interface Sci. , 2010, 341: 23-29
[22] Zhao B B, Tian C H, Zhang Y, Tang T, Wang F Y. Particuology, 2011, 9: 314-317
[23] Bhagat S D, Rao A V. Appl. Surf. Sci., 2006, 252: 4289-4297
[24] Rao A V, Bhagat S D. Solid State Sci., 2004, 6: 945-952
[25] Choi D G, Yang S M. J. Colloid Interf. Sci., 2003, 261: 127-132
[26] Hohenesche C F, Ehwald V, Unger K K. J. Chromatogr. A, 2004, 1025: 177-187
[27] 赵贝贝(Zhao B B), 许婵婵(Xu C C), 唐涛(Tang T), 李彤(Li T), 张维冰(Zhang W B), 王风云(Wang F Y). 无机材料学报(Chinese of Journal of Inorganic Materials), 2011, 26: 1090-1094
[28] 杨新立(Yang X L). 中国科学院大连化学物理研究所博士论文(Doctoral Disseratation of Dalian Institute of Chemical Physics Chinese of Academy of Sciences), 2001
[29] 赵贝贝(Zhao B B), 许婵婵(Xu C C), 唐涛(Tang T), 李彤(Li T), 张维冰(Zhang W B), 王风云(Wang F Y). 分析化学(Chinese of Analytical Chemistry), 2011, 39: 1243-1246
[30] Wu Y J, Ren X Q, Wang J. Mater. Chem. Phys. , 2009, 113: 773-779
[31] Tian R J, Sun J M, Zhang H, Ye M L, Xie C H, Dong J, Hu J W, Ma D, Bao X H, Zou H F. Electrophoresis, 2006, 27: 742-748
[32] Poyraz A S, Albayrak C, Dag O. Microporous Mesoporous Mater., 2008, 115: 548-555
[33] Li Y Y, Cheng S Y, Dai P C, Liang X M, Ke Y X. Chem. Commun., 2009, 1085-1087
[34] Hao W Q, Di B, Liu H, Hang T J, Yan F, Su M X. Chromatographia, 2011, 73: 623-629
[35] Wan H H, Liu L, Li C M, Xue X Y, Liang X M. J. Colloid Interf. Sci., 2009, 337: 420-426
[36] Liu X B, Li L S, Du Y, Guo Z, Ong T T, Chen Y, Ng S C, Yang Y H. J. Chromatogr. A, 2009, 1216: 7767-7773
[37] Ai F, Li L S, Ng S C, Tan T T Y. J. Chromatogr. A, 2010, 1217: 7502-7506
[38] Yang L M, Wang Y J, Sun Y W, Luo G S, Dai Y Y. J. Colloid Interf. Sci., 2006, 299: 823-830
[39] Yang L M, Wang Y J, Luo G S, Dai Y Y. Particuology, 2008, 6: 143-148
[40] Kirkland J J, Truszkowski F A, Ricker R D. J. Chromatogr. A, 2002, 965: 25-34
[41] Kirkland J J, Truszkowski F A, Dilks J C H, Engel G S. J. Chromatogr. A, 2000, 890: 3-13
[42] Faria A M, Magalhaes D R, Collins K E, Collins C H. Anal. Chim. Acta, 2005, 550: 137-143
[43] Silva C R, Airoldi C, Collins K E, Collins C H. J. Chromatogr. A, 2008, 1191: 90-98
[44] Collins C H, Silva C R, Faria A M, Collins K E, Jardim I C S F. J. Braz. Chem. Soc., 2009, 20: 604-612
[45] Liang X, Liu S, Liu H, Liu X, Jiang S. J. Sep. Sci., 2010, 33: 3304-3312
[46] Nakanishi K, Minakuchi H, Soga N, Tanaka N. J. Sol-Gel Sci. Technol., 1998, 13: 163-169
[47] Wei J X, Shi Z G, Chen F, Feng Y Q, Guo Q Z. J. Chromatogr. A, 2009, 1216: 7388-7393
[48] Novakova L, Matysova L, Solich P. Talanta, 2006, 68: 908-918
[49] Jiang Z P, Fisk R P, Gara J O, Walter T H, Wyndham K D. US 2007/0243383, 2007
[50] Guo R R, Ding M Y. Colloids Surf. A, 2007, 292: 153-158
[51] Li Y S, Li B, Han N Y, Xu B J. J. Chromatogr. A, 2003, 1021: 183-189
[52] Kirkland J J. J. Chromatogr. A, 2004, 1060: 9-21
[53] Luo H, Carr P W. Anal. Bioanal. Chem., 2008, 391: 919-923
[54] McCalley D V. J. Chromatogr. A, 2010, 1217: 858-880
[55] Chice J, Meca S, Companyo R, Prat M D, Granados M. J. Chromatogr. A, 2008, 1181: 1-8
[56] He Z Y, Lv C G, Fan X X, Zhou Z Q. Anal. Chim. Acta, 2011, 689(1): 143-148
[57] Tello A M, Lebron-Aguilar R, Quintanilla-Lopez J E, Santiuste J M. J. Chromatogr. A, 2009, 1216: 1630-1639
[58] Tamayo F G, Titirici M M, Martin-Esteban A, Sellergren B. Anal. Chim. Acta, 2005, 542: 38-46
[59] Burdukova E, Li H, Ishida N, Shea J P O, Franks G V. J. Colloid Interf. Sci. , 2010, 342: 586-592
[60] Kanazawa H, Ayano E, Sakamoto C, Yoda R, Kikuchi A, Okano T. J. Chromatogr. A, 2006, 1106: 152-158
[61] Mallik A K, Rahman M M, Czaun M, Takafuji M, Ihara H. J. Chromatogr. A, 2008, 1187: 119-127
[62] Sadilek P, Satinsky D, Solich P. Trends Anal. Chem., 2007, 26: 375-384
[63] Kurpczynska K, Buszewski B, Jandera P. Anal. Chem., 2004, 76: 227-234
[64] Faria A M, Magalhaes D R, Collins K E, Collins C H. Anal. Chim. Acta, 2005, 550: 137-143
[65] Xiong C Q, Zhou X Y, Chen R, Zhang Y M, Peng W P, Nie Z X, Chang H C, Liu H W, Chen Y. Anal. Chem., 2011, 83: 5400-5406
[66] Buszewski B, Bocian S, Felinger A. J. Chromatogr. A, 2008, 1191: 72-77
[67] Dehouck P, Visky D, Heyden Y V, Adams E, Kovacs Z, Noszal B, Massart D L, Hoogmartens J. J. Chromatogr. A, 2004, 1025: 189-200
[68] Standard Reference Materia®869a. National Institute of Standard & Technology, 2002
[69] Standard Reference Materia®870a. National Institute of Standard & Technology, 2002
[70] Visky D, Heyden Y V, Ivanyi T, Baten P, Beer J D, Kovacs Z, Noszal B, Dehouck P, Roets E, Massart D L, Hoogmartens J. J. Chromatogr. A, 2003, 1012: 11-29
[71] Ye C, Terfloth G, Li Y, Kord A. J. Pharm. Biomed. Anal., 2009, 50: 429-431
[72] Claessens H A, Straten M A. J. Chromatogr. A, 2004, 1060: 23-41
[73] Liu Y, Grinberg N, Thompson K C, Wenslow R M, Neue U D, Morrison D, Walter T H, Gara J E O, Wyndham K D. Anal. Chim. Acta, 2005, 554: 144-151
[74] Neue U D. J. Sep. Sci., 2007, 30: 1611-1627
[75] Wu N, Liu Y, Lee M L. J. Chromatogr. A, 2006, 1131: 142-150
[76] Nguyen D T T, Guillarme D, Rudaz S, Veuthey J L. J. Sep. Sci., 2006, 29: 1836-1848
[77] Garcia-Canas V, Lorbetskie B, Girard M. J. Chromatogr. A, 2006, 1123: 225-232
[78] Klejdus B, Vacek J, Lojkova L, Benesova L, Kuban V. J. Chromatogr. A, 2008, 1195: 52-59
[79] Gosetti F, Frascarolo P, Polati S, Medana C, Gianotti V, Palma P, Aigotti R, Baiocchi C, Gennaro M C. Food Chem., 2007, 105: 1738-1747
[80] Pesek J J, Matyska M T, Sukul D. J. Chromatogr. A, 2008, 1191: 136-140
[81] Naeem H A, Sapirstein H. J. Cereal Sci., 2007, 46: 157-168
[82] Gritti F, Guiochon G. J. Chromatogr. A, 2007, 1166: 30-46
[83] Abrahim A, Al-Sayah M, Skrdla P, Bereznitsk Y, Chen Y, Wu N. J. Pharm. Biomed. Anal., 2010, 51: 131-137
[84] Lurie I S. J. Chromatogr. A, 2005, 1100: 168-175
[85] Klejdus B, Vacek J, Lojkova L, Lojkova L, Benesova L, Kuban V. J. Chromatogr. A, 2008, 1195: 52-59
[86] Liu Y, Grinberg N, Thompson K C, Wenslow R M, Neue U D, Morrison D, Walter T H, OGara J E, Wyndham K D. Anal. Chim. Acta, 2005, 554: 144-151
[87] Teutenberg T. Anal. Chim. Acta, 2009, 643: 1-12
[88] Nguyen D T T, Guillarme D, Heinisch S, Marie-Pierre B, Rocca J L, Rudaz S, Veuthey J L. J. Chromatogr. A, 2007, 1167: 76-84
[89] Lurie I, Li L. J. Liq. Chromatogr. Related Technol. , 2009, 32: 2615-2626

[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[3] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[4] Heli Wang, Meihua Zhu, Li Liang, Ting Wu, Fei Zhang, Xiangshu Chen. Preparation and Gas Separation Performance of SSZ-13 Zeolite Membranes [J]. Progress in Chemistry, 2020, 32(4): 423-433.
[5] Qianwen Huang, Xiaowen Zhang, Mi Li, Xiaoyan Wu, Liyong Yuan. Preparation of Functional Fibrous Silica Nanoparticles and Their Applications in Adsorption and Separation [J]. Progress in Chemistry, 2020, 32(2/3): 230-238.
[6] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.
[7] Du Xin, Zhao Caixia, Huang Hongwei, Wen Yongqiang, Zhang Xueji. Synthesis of Dendrimer-Like Porous Silica Nanoparticles and Their Applications in Advanced Carrier [J]. Progress in Chemistry, 2016, 28(8): 1131-1147.
[8] Wang Shengjie, Cai Qingwei, Du Mingxuan, Cao Meiwen, Xu Hai. Biomimetic Mineralization of Silica [J]. Progress in Chemistry, 2015, 27(2/3): 229-241.
[9] Zhang Xiaodong, Dong Han, Wang Yin, Cui Lifeng. Host-Guest Assembly and Application of Ordered Mesoporous Silica Materials [J]. Progress in Chemistry, 2015, 27(10): 1374-1383.
[10] Zeng Feng, Pan Zhenzhen, Zhang Meng, Huang Yongzhuo, Cui Yanna, Xu Qin. Preparation and Application of Ordered Mesoporous Silica Nanoparticles in the Therapy and Diagnosis of Tumor [J]. Progress in Chemistry, 2015, 27(10): 1356-1373.
[11] Bian Shujuan, Wu Hongqing, Jiang Xuheng, Long Yafeng, Chen Yong. Syntheses and Applications of Hybrid Mesoporous Silica Membranes [J]. Progress in Chemistry, 2014, 26(08): 1352-1360.
[12] Shao Zaidong, Zhang Ying, Cheng Xuan. Advances in Mechanically Enhanced Silica Aerogel Monoliths as Thermal Insulating Materials [J]. Progress in Chemistry, 2014, 26(08): 1329-1338.
[13] Li Feihu, Nie Dongyang. Iron-Based Inorganic Mesoporous Materials [J]. Progress in Chemistry, 2014, 26(06): 961-975.
[14] Wu Liang, Mu Chunlei, Zhang Qunlin*, Lü Chen, Zhang Xiaoyue. Nanoparticle-Involved Luminol Chemiluminescence and Its Analytical Applications [J]. Progress in Chemistry, 2013, 25(07): 1187-1197.
[15] Wang Xiaohong*, Gan Lu, Heinz C. Schröder, Werner E.G. M黮ler*. Paradigm Shift in Bioinorganic Chemistry: Enzymatic Polycondensation Reaction of Silica in Siliceous Sponges [J]. Progress in Chemistry, 2013, 25(04): 435-445.