中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (01): 101-109 Previous Articles   Next Articles

• Review •

The Principles and Applications of An Ambient Ionization Method——Direct Analysis in Real Time (DART)

Zhang Jialing, Huo Feifeng, Zhou Zhigui, Bai Yu*, Liu Huwei   

  1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
PDF ( 1756 ) Cited
Export

EndNote

Ris

BibTeX

The development of ionization approach has been focused on the ambient ionization methods in the past decade. DART was first reported by Cody and coworkers in 2005 and has been widely applied in the analysis of various samples including solids, liquids or gases. Helium or nitrogen is chosen as the working gas of DART. The working gas is activated by discharge needle and subsequently heated in the heating cell for the further sample ionization. The DART technology needs minimal or no sample pretreatmentand direct analysis can be carried out by holding sample in the localization between the outlet of DART and the entrance of mass spectrometer. This review presents the development, the ionization mechanism, and the major operation parameters of DART. And the applications in direct analysis of pheromones from live drosophila, screening of counterfeit drugs, identification of ingredient of inksand other samples are summarized. In the end, the technological limitations and development trends of DART are also discussed.

Contents
1 Introduction
2 The geometry and ionization mechanism of DART
2.1 The geometry of DART
2.2 The ionization mechanism of DART
3 Parameters of DART
4 The applications of DART
4.1 Direct analysis of pheromones from live drosophila
4.2 Screening of counterfeit drugs
4.3 Identification of ingredient of inks
4.4 Other applications
5 Conclusions and perspectives

CLC Number: 

[1] Fernandez F M, Cody R B, Green M D, Hampton C Y, McGready R, Sengaloundeth S, White N J, Newton P N. Chem. Medchem., 2006, 1 (7): 702-705
[2] Takats Z, Wiseman J M, Gologan B, Cooks R G. Science, 2004, 306 (5695): 471-473
[3] Cooks R G, Ouyang Z, Takats Z, Wiseman J M. Science, 2006, 311 (5767): 1566-1570
[4] Yamashita M, Fenn J B. J. Phys. Chem., 1984, 88 (20): 4451-4459
[5] Laiko V V, Baldwin M A, Burlingame A L. Anal. Chem., 2000, 72 (4): 652-657
[6] Cody R B, Laramee J A, Durst H D. Anal. Chem., 2005, 77 (8): 2297-2302
[7] Harris G A, Nyadong L, Fernandez F M. Analyst, 2008, 133 (10): 1297-1301
[8] Haddad R, Sparrapan R, Eberlin M N. Rapid Commun. Mass Spectrom., 2006, 20 (19): 2901-2905
[9] Haapala M, Pol J, Saarela V, Arvola V, Kotiaho T, Ketola R A, Franssila S, Kauppila T J, Kostiainen R. Anal. Chem., 2007, 79 (20): 7867-7872
[10] McEwen C N, McKay R G, Larsen B S. Anal. Chem., 2005, 77 (23): 7826-7831
[11] Takats Z, Cotte-Rodriguez I, Talaty N, Chen H W, Cooks R G. Chem. Commun., 2005, 1950-1952
[12] Na N, Zhao M X, Zhang S C, Yang C D, Zhang X R. J. Am. Soc. Mass Spectrom., 2007, 18 (10): 1859-1862
[13] Ratcliffe L V, Rutten F J M, Barrett D A, Whitmore T, Seymour D, Greenwood C, Aranda-Gonzalvo Y, Robinson S, McCoustra M. Anal. Chem., 2007, 79 (16): 6094-6101
[14] Chen H W, Wortmann A, Zenobi R. J. Mass Spectrom., 2007, 42 (9): 1123-1135
[15] Huang M Z, Hsu H J, Wu C I, Lin S Y, Ma Y L, Cheng T L, Shiea J. Rapid Commun. Mass Spectrom., 2007, 21 (11): 1767-1775
[16] Nemes P, Vertes A. Anal. Chem., 2007, 79 (21): 8098-8106
[17] Sampson J S, Hawkridge A M, Muddiman D C. Rapid Commun. Mass Spectrom., 2007, 21 (7): 1150-1154
[18] Rezenom Y H, Dong J, Murray K K. Analyst, 2008, 133 (2): 226-232
[19] Cermak V, Herman Z. Chemical Physics Letters, 1968, 2 (6): 359-362
[20] Song L G, Gibson S C, Bhandari D, Cook K D, Bartmess J E. Anal. Chem., 2009, 81 (24): 10080-10088
[21] Cody R B. Anal. Chem., 2009, 81 (3): 1101-1107
[22] Yew J Y, Cody R B, Kravitz E A. Proc. Natl. Acad. Sci. U. S. A, 2008, 105 (20): 7135-7140
[23] Jones R W, Cody R B, McClelland J F. J. Forensic Sci., 2006, 51 (4): 915-918
[24] Curtis M E, Jones P R, Sparkman O D, Cody R B. J. Am. Soc. Mass Spectrom., 2009, 20 (11): 2082-2086
[25] Kpegba K, Spadaro T, Cody R B, Nesnas N, Olson J A. Anal. Chem., 2007, 79 (14): 5479-5483
[26] Maleknia S D, Vail T M, Cody R B, Sparkman D O, Bell T L, Adams M A. Rapid Commun. Mass Spectrom., 2009, 23 (15): 2241-2246
[27] Bennett M J, Steiner R R. J. Forensic Sci., 2009, 54 (2): 370-375
[28] Steiner R R, Larson R L. J. Forensic Sci., 2009, 54 (3): 617-622
[29] Petucci C, Diffendal J, Kaufman D, Mekonnen B, Terefenko G, Musselman B. Anal. Chem., 2007, 79 (13): 5064-5070
[30] Rothenbacher T, Schwack W. Rapid Commun. Mass Spectrom., 2010, 24 (1): 21-29
[31] Rothenbacher T, Schwack W. Rapid Commun. Mass Spectrom., 2009, 23 (17): 2829-2835
[32] Jagerdeo E, Abdel-Rehim M. J. Am. Soc. Mass Spectrom., 2009, 20 (5): 891-899
[33] Pierce C Y, Barr J R, Cody R B, Massung R F, Woolfitt A R, Moura H, Thompson H A, Fernandez F M. Chem. Commun., 2007, 807-809
[34] Yu S X, Crawford E, Tice J, Musselman B, Wu J T. Anal. Chem., 2009, 81 (1): 193-202
[35] Pena-Quevedo A J, Cody R B, Mina-Camilde N, Ramos M, Hernandez-Rivera S P. Proc. SPIE, 2007, 6538 (653828): 1-12
[36] Schurek J, Vaclavik L, Hooijerink H, Lacina O, Poustka J, Sharman M, Caldow M, Nielen M W F, Hajslova J. Anal. Chem., 2008, 80 (24): 9567-9575
[37] Zhao Y P, Lam M, Wu D L, Mak R. Rapid Commun. Mass Spectrom., 2008, 22 (20): 3217-3224
[38] Borges D L G, Sturgeon R E, Welz B, Curtius A J, Mester Z. Anal. Chem., 2009, 81 (23): 9834-9839
[39] Nilles J M, Connell T R, Durst H D. Anal. Chem., 2009, 81 (16): 6744-6749
[40] Vaclavik L, Cajka T, Hrbek V, Hajslova J. Anal. Chim. Acta, 2009, 645 (1/2): 56-63
[41] Banerjee S, Madhusudanan K P, Khanuja S P S, Chattopadhyay S K. Biomed. Chromatogr., 2008, 22 (3): 250-253
[42] Banerjee S, Madhusudanan K P, Chattopadhyay S K, Rahman L U, Khanuja S P S. Biomed. Chromatogr., 2008, 22 (8): 830-834
[43] Madhusudanan K P, Banerjee S, Khanuja S P S, Chattopadhyay S K. Biomed. Chromatogr., 2008, 22 (6): 596-600
[44] Haefliger O P, Jeckelmann N. Rapid Commun. Mass Spectrom., 2007, 21 (8): 1361-1366
[45] Cajka T, Riddellova K, Tomaniova M, Hajslova J. J. Chromatogr. A, 2010, 1217 (25): 4195-4203
[46] Haunschmidt M, Klampfl C W, Buchberger W, Hertsens R. Analyst, 2010, 135 (1): 80-85
[47] Haunschmidt M, Klampfl C W, Buchberger W, Hertsens R. Anal. Bioanal. Chem., 2010, 397 (1): 269-275
[48] Block E, Dane A J, Thomas S, Cody R B. J. Agric. Food Chem., 2010, 58 (8): 4617-4625
[49] Vaclavik L, Rosmus J, Popping B, Hajslova J. J. Chromatogr. A, 2010, 1217 (25): 4204-4211
[50] Dane A J, Cody R B. Analyst, 2010, 135 (4): 696-699
[51] Domin M A, Steinberg B D, Quimby J M, Smith N J, Greene A K, Scott L T. Analyst, 2010, 135 (4): 700-704
[52] Jeckelmann N, Haefliger O P. Rapid Commun. Mass Spectrom., 2010, 24 (8): 1165-1171
[53] Morlock G, Ueda Y. J. Chromatogr. A, 2007, 1143 (1/2): 243-251
[54] Galhena A S, Harris G A, Nyadong L, Murray K K, Fernandez F M. Anal. Chem., 2010, 82 (6): 2178-2181
[55] Eberherr W, Buchberger W, Hertsens R, Klampfl C W. Anal. Chem., 2010, 82 (13): 5792-5796
[56] Harris G A, Kwasnik M, Fernandez F M. Anal. Chem., 2011, 83 (6): 1908-1915
[57] Zhou Z G, Zhang J L, Zhang W, Bai Y, Liu H W. Analyst, 2011, 136 (12): 2613-2618
[58] Chen H W, Venter A, Cooks R G. Chem. Commun., 2006, 2042-2044
[59] Kim H J, Oh M S, Jang Y P. Phytochem. Analysis,2011, 22(3): 258-262
[60] Chernetsova E S, Bochkov P O, Ovcharov M V, Zhokhov S S, Abramovich R A. Drug Test. Anal., 2010, 2 (5/6): 292-294
[61] Watts K R, Loveridge S T, Tenney K, Media J, Valeriote F A, Crews P. J. Org. Chem., 2011, 76 (15): 6201-6208
[62] Sanchez L M, Curtis M E, Bracamonte B E, Kurita K L, Navarro G, Sparkman O D, Linington R G. Org. Lett., 2011, 13 (15): 3770-3773
[63] Mess A, Vietzke J P, Rapp C, Francke W. Anal. Chem., 2011, 83 (19): 7323-7330
[64] Deroo C S, Armitage R A. Anal. Chem., 2011, 83 (18): 6924-6928

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[8] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[13] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[14] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[15] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.