中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (01): 1-7   Next Articles

Interfacial Supramolecular Chemistry for Stimuli-Responsive Functional Surfaces

Wan Pengbo1, Hill Eric H.2, Zhang Xi1   

  1. 1. Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
    2. Department of Chemical and Nuclear Engineering, Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131-1341, United States
  • Received: Online: Published:
PDF ( 2450 ) Cited
Export

EndNote

Ris

BibTeX

The combination of supramolecular chemistry with interfaces enhances the development of supramolecular chemistry as well as colloid and interface science. Supramolecular chemistry at interfaces allows for the construction of various smart and soft surfaces that can adapt to environmental changes, such as biomimetic surfaces and self-cleaning surfaces. In this article, we discuss strategies for the transfer of supramolecular complexes of azobenzene and cyclodextrin from solution to surfaces for the fabrication of stimuli-responsive surfaces with novel interfacial functions including tunable surface wettability, reversible protein adsorption and resistance, and photo-switchable bioelectrocatalysis. It is anticipated that these concepts can be extended to other supramolecular systems in order to engineer functional surfaces with designed structures and functions. Contents
1 Introduction
2 Photocontrolled interfacial molecular shuttle for tunable surface wettabiloty
3 Dual-controlled reactivated biointerface for reversible protein immobilization
4 Nearly complete and reversible interfacial resistance of cytochrome c
5 Host-guest chemistry ar interfaces for photoswitchable bioelectrocatalysis
6 Conclusions
[1] Zhang X, Whitten D G. Langmuir, 2011, 27: 1245-1245

[2] Jiang Y G, Wan P B, Smet M, Wang Z Q, Zhang X. Adv. Mater., 2008, 20: 1972-1977

[3] Jiang Y G, Wang Z Q, Yu X, Shi F, Xu H P, Zhang X, Smet M, Dehaen W. Langmuir, 2005, 21: 1986-1990

[4] Shi F, Niu J, Liu J L, Liu F, Wang Z Q, Feng X Q, Zhang X. Adv. Mater., 2007, 19: 2257-2261

[5] Yu X, Wang Z Q, Jiang Y Q, Shi F, Zhang X. Adv. Mater., 2005, 17: 1289-1293

[6] Zhang X, Shi F, Niu J, Jiang Y Q, Wang Z Q. J. Mater. Chem., 2008, 18: 621-633

[7] Blodgett K B, Langmuir I. Phys. Rev., 1937, 51: 964-982

[8] Decher G. Science, 1997, 277:1232-1237

[9] Nuzzo R G, Fusco F A, Allara D L. J. Am. Chem. Soc., 1987, 109: 2358-2368

[10] Wang Y P, Xu H P, Zhang X. Adv. Mater., 2009, 21: 2849-2864

[11] Liao X J, Chen G S, Liu X X, Chen W X, Chen F E, Jiang M. Angew. Chem. Int. Ed., 2010, 49: 4409-4413

[12] Liu Y, Chen Y. Acc. Chem. Res., 2006, 39: 681-691

[13] Zhang X, Wang C. Chem. Soc. Rev., 2011, 40: 94-101

[14] Wang Y P, Zhang M, Moers C, Chen S L, Xu H P, Wang Z Q, Zhang X, Li Z B. Polymer, 2009, 50: 4821-4828

[15] Wang C, Wang Z Q, Zhang X. Small, 2011, 7: 1379-1383

[16] Klajn R, Stoddart J F, Grzybowski B A. Chem. Soc. Rev., 2010, 39: 2203-2237

[17] Wang Y P, Ma N, Wang Z Q, Zhang X. Angew. Chem. Int. Ed., 2007, 46: 2823-2826

[18] Wan P B. Doctoral Dissertation of Tsinghua University, 2011

[19] Wan P B, Jiang Y G, Wang Y P, Wang Z Q, Zhang X. Chem. Commun., 2008, 5710-5712

[20] Wan P B, Wang Y P, Jiang Y G, Xu H P, Zhang X. Adv. Mater., 2009, 21: 4362-4365

[21] Wan P B, Chen Y Y, Xing Y B, Chi L F, Zhang X. Langmuir, 2010, 26: 12515-12517

[22] Wan P B, Xing Y B, Chen Y Y, Chi L F, Zhang X. Chem. Commun., 2011, 47: 5994-5996

[23] Tian H, Wang Q C. Chem. Soc. Rev., 2006, 35: 361-374

[24] Coronado E, Gavina P, Tatay S. Chem. Soc. Rev., 2009, 38: 1674-1689

[25] Willner I, PardoYissar V. J. Electroanal. Chem., 2001, 497: 172-177

[26] Wenz G, Han B H, Müller A. Chem. Rev., 2006, 106: 782-817

[27] Kawaguchi Y, Harada A. J. Am. Chem. Soc., 2000, 122: 3797-3798

[28] Mahan E J, Dennis J A. Org. Lett., 2006, 8: 5085-5088

[29] Jiao H, Goh S H, Valiyaveettil S. Macromolecules, 2003, 36: 4241-4243

[30] Mendes P M. Chem. Soc. Rev., 2008, 37: 2512-2529

[31] Xu J S, Bowden E F. J. Am. Chem. Soc., 2006, 128: 6813-6822

[32] Zhou J H, Lu X B, Hu J Q, Li J H. Chem. Eur. J., 2007, 13: 2847-2853

[33] Jiang S Y, Cao Z Q. Adv. Mater., 2010, 22: 920-932

[34] Ma H W, Wells M, Beebe T P, Chilkoti A. Adv. Funct. Mater., 2006, 16: 640-648

[35] Mohammed J S, Murphy W L. Adv. Mater., 2009, 21: 2361-2374

[36] Shipway A N, Willner I. Acc. Chem. Res., 2001, 34: 421-432

[37] Niazov T, Shlyahovsky B, Willner I. J. Am. Chem. Soc., 2007, 129: 6374-6375
[1] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[2] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[3] Bo Yan, Hongwei Zhou*, Pu Xie, Xilang Jin, Aijie Ma*, Weixing Chen. Dynamic and Reversible Intelligent Systems Regulated by Chemical Oscillating Reactions [J]. Progress in Chemistry, 2017, 29(7): 740-749.
[4] Huang Wenzhong, Zhan Tianguang, Lin Feng, Zhao Xin. Recent Progress in the Construction and Regulation of Supramolecular Polymers Based on Host-Guest Interactions [J]. Progress in Chemistry, 2016, 28(2/3): 165-183.
[5] Peng Liao, Feng Anchao, Wang Hong, Zhang Huijuan, Yuan Jinying. Voltage-Responsive Systems Based on β-Cyclodextrin and Ferrocene [J]. Progress in Chemistry, 2013, 25(11): 1942-1950.
[6] Zhao Dan, Wang Yan, Zhao Min. Bioelectrochemistry of Laccase [J]. Progress in Chemistry, 2011, 23(6): 1224-1236.
[7] Zhang Huacheng, Xin Feifei, Li Yueming, Hao Aiyou, An Wei, Sun Tao. Supramolecular Cyclodextrins Amphiphiles [J]. Progress in Chemistry, 2010, 22(12): 2276-2281.