中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (9): 1794-1800 Previous Articles   Next Articles

• Review •

Live Wire: A Review on Electron Transfer Mechanism and Applications of Microbial Nanowires

Xu Jielong1,2, Zhou Shungui2, Yuan Yong2, Wang Yueqiang2, Zhuang Li2   

  1. 1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
  • Received: Revised: Online: Published:
PDF ( 951 ) Cited
Export

EndNote

Ris

BibTeX

Microbial nanowires are electrically conductive pilus-like appendages, which are produced under soluble electron acceptor-limiting conditions. The findings of microbial nanowires demonstrate a novel and efficient pathway for extracellular electron transfer. The microbes use these conductive nanowires to transfer electrons over long distances, from the cell surface to the surface of extracellular electron acceptors (such as Fe(Ⅲ) oxides and electrodes), overcoming the requirement of direct physical contact between microbes and electron acceptors. The discovery of microbial nanowires has advanced our understanding of extracellular respiration and the diversity of microbial respiratory systems in nature. It has great significances for electricity production of microbial fuel cell, degradation of organic pollutants and bioenergy generation. Moreover, it will help us to develop the advanced materials and micromodule equipments in the emerging field of nanotechnology. In this review, we introduced the basic characteristics of microbial nanowires and the microorganisms capable of producing nanowires. The studies on their electron transfer mechanisms and applications in bioremediation and bioenergy are reviewed with an emphasis, and the prospects of key researches in the future are discussed. Contents 1 Introduction
2 What is microbial nanowire
3 Microorganisms that produce nanowires
4 Electron transfer mechanism of microbial nanowires
5 Applications of microbial nanowires
5.1 Microbial fuel cell
5.2 Environmental remediation
5.3 Bioenergy generation
5.4 Other applications
6 Prospects

CLC Number: 

[1] Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. Nature, 2005, 435(7045): 1098-1101
[2] Gorby Y A, Yanina S, McLean J S, Rosso K M, Moyles D, Dohnalkova A, Beveridge T J, Chang I S, Kim B H, Kim K S, Culley D E, Reed S B, Romine M F, Saffarini D A, Hill E A, Shi L, Elias D A, Kennedy D W, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson K H, Fredrickson J K. Proc. Natl. Acad. Sci. USA, 2006, 106(23): 9535-9535
[3] Ntarlagiannis D, Atekwana E A, Hill E A, Gorby Y. Geophys. Res. Lett., 2007, 34(17): art. no. L17305
[4] Ball P. Nature, 2007, 449(7161): 388-388
[5] Rabaey K, Rodr韌uez J, Blackall L L, Keller J, Gross P, Batstone D, Verstraete W, Nealson K H. ISME J., 2007, 1(1): 9-18
[6] Lovley D R. Energ. Environ. Sci., 2011, 4(12): 4896-4906
[7] Leung K M, Wanger G, Guo Q, Gorby Y, Southam G L, Woon M, Yang J. Soft Matter, 2011, 7(14): 6617-6621
[8] Sanchez C. Nat. Rev. Microbiol., 2011, 6(9): 573-579
[9] El-Naggar M Y, Gorby Y A, Xia W, Nealson K H. Biophys. J., 2008, 95(1): L10-L12
[10] Richter H, Nevin K P, Jia H F, Lowy D A, Lovley D R, Tender L M. Energ. Environ. Sci., 2009, 2(5): 506-516
[11] El-Naggar M Y, Wanger G, Leung K M, Yuzvinsky T D, Southam G, Yang J, Lau W M, Nealson K H, Gorby Y A. Abstr. Pap. Am. Chem. Soc., 2011, 107(42): 18127-18131
[12] Sarah M, Strycharz-Glaven R M S, Anthony G E, Leonard M T. Energ. Environ. Sci., 2011, 4(11): 4366-4379
[13] Gorby Y A. Bio Micro and Nanosystems Conference, 2006. 20
[14] Leang C, Qian X, Mester T, Lovley D R. Appl. Environ. Microbiol., 2010, 76(12): 4080-4084
[15] Tremblay P L, Aklujkar M, Leang C, Nevin K P, Lovley D R. Env. Microbiol. Rep., 2012, 4(1): 82-88
[16] Malvankar N S, Vargas M, Nevin K P, Franks A E, Leang C, Covalla S F, Johnson J P, Kim B C, Inoue K, Rotello V M, Tuominen M T, Lovley D R. Nat. Nanotechnol., 2011, 6(9): 373-579
[17] Inoue K, Qian X, Morgado L, Kim B C, Mester T, Izallalen M, Salgueiro C A, Lovley D R. Appl. Environ. Microbiol., 2010, 76(12): 3999-4007
[18] Mehta T, Coppi M V, Childer S E, Lovley D R. Appl. Environ. Microbiol., 2005, 71(12): 8634-8641
[19] Qian X, Mester T, Morgado L, Arakawa T, Sharma M L, Inoue K, Joseph C, Salgueiro C A, Maroney M J, Lovley D R. Biochimica. Biophysica Acta (BBA)-Bioenergetics, 2011, 1807(4): 404-412
[20] Gorby Y A, Yanina S V, Moyles D, McLean J S, Rosso K M, Beveridge T J, Kennedy D W, Marshall M J, Dohnalkova A, Beliaev A, Fredrickson J K, Nealson K. Abstr. Pap. Am. Chem. Soc., 2006, S232
[21] Rollefson J B, Stephen C S, Tien M, Bond D R. J. Bacteriol., 2011, 193(5): 1023-1033
[22] Gralnick J A, Newman D K. Mol. Microbiol., 2007, 65(1): 1-11
[23] Lovley D R, Holmes D E, Nevin K P. Adv. Microb. Physiol., 2004, 49: 219-286
[24] Hartshorne R S, Reardon C L, Ross D, Nuester J, Clarke T, Gates A J, Mills P C, Fredrickson J K. Proc. Natl. Acad. Sci. USA, 2009, 106(52): 22169-22174
[25] Shi L, Chen B, Wang Z, Elias D A, Mayer M U, Gorby Y A, Ni S, Lower B H, Kennedy D W, Wunschel D S. J. Bacteriol., 2006, 188(13): 4705-4714
[26] Xu F L, Duan J Z, Hou B R. Bioelectrochemistry, 2010, 78(1): 92-95
[27] Shi L, Squier T C, Zachara J M, Fredrickson J K. Mol. Microbiol., 2007, 65(1): 12-20
[28] Reguera G, Nevin K P, Nicoll J S, Covalla S F, Woodard T L, Lovley D R. Appl. Environ. Microbiol., 2006, 72(11): 7345-7348
[29] Reguera G, Nevin K P, Nicoll J S, Covalla S F, Lovley D R. Abstr. Gen. Meet. Am. Soc. Microbiol., 2006, Q143
[30] Jiang S, Kim M G, Kim S J, Jung H S, Lee S W, Sadowsky M J, Hur H G. Chem. Commun., 2011, 47(28): 8076-8078
[31] Morita M, Malvankar N S, Franks A E, Summers Z M, Giloteaux L, Rotaru A E, Rotaru C, Lovley D R. mBio., 2011, 2(4): art. no. e00159-11
[32] Geelhoed J S, Hamelers H V M, Stams A J M. Curr. Opin. Microbiol., 2010, 13 (3): 307-315
[33] Jeremiasse A W, Hamelers H V M, Buisman C J N. Bioelectrochemistry, 2010, 78(1): 39-43
[34] Rozendal R A, Jeremiasse A W, Hamelers H V M, Buisman C J N. Environ. Sci. Technol., 2007, 42 (2): 629-634
[35] Flynn J M, Ross D E, Hunt K A, Bond D R, Gralnick J A. mBio., 2010, 1(5): art. no. e00190-10
[36] Sayler G S, Simpson M L, Cox C D. Curr. Opin. Microbiol., 2004, 7(3): 267-273
[37] Reguera G. Trends Microbiol., 2011, 19 (3): 105-113
[38] O'Neil R A, Holmes D E, Coppi M V, Adams L A, Larrahondo M J, Ward J E, Nevin K P, Woodard T L. Environ. Microbiol., 2008, 10(5): 1218-1230
[1] Lixiang Chen, Yidi Li, Xiaochun Tian, Feng Zhao. Electron Transfer in Gram-Positive Electroactive Bacteria and Its Application [J]. Progress in Chemistry, 2020, 32(10): 1557-1563.
[2] Ma Jinlian, Ma Chen, Tang Jia, Zhou Shungui, Zhuang Li. Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840.
[3] . Perfluorinated Chemicals Related Environmental Problems [J]. Progress in Chemistry, 2009, 21(0203): 369-376.
[4] Kuang Tingyun1,2*,Bai Kezhi1,Yang Xiushan2. Suggestions on the Development Strategy of Bioenergy in China [J]. Progress in Chemistry, 2007, 19(0708): 1060-1063.
[5] Yaqi Cai**,Yali Shi,Ping Zhang,Shifen Mou,Guibin Jiang. Perchlorate Related Environmental Problems [J]. Progress in Chemistry, 2006, 18(11): 1554-1564.