中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (9): 1785-1793 Previous Articles   Next Articles

• Review •

Enrichment Methods of Phosphopeptides in Proteomics

Li Pengzhang, Wang Yuebo   

  1. School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China
  • Received: Revised: Online: Published:
PDF ( 2091 ) Cited
Export

EndNote

Ris

BibTeX

The reversible phosphorylation of proteins is recognized as an important branch of proteomics. As one of the most important post-translational modifications, protein phosphorylation plays a very important role in cellular recognition, cellular signal transduction, gene expression and cellular metabolism. Exploration of phosphopeptides using appropriate methods can help us further understand the mechanism of physiology and pathology. However, mass spectra (MS) signals of phosphopeptides are frequently suppressed by the presence of abundant nonphosphopeptides and superabundant of salts which will cause poor selectivity. Therefore, selective enrichment of phosphopeptides is essential to facilitate the MS analysis. This paper summarizes several enrichment techniques of phosphopeptides, including immobilized metal affinity chromatography (IMAC), metal oxide enrichment methods, strong cation exchange chromatography (SCX), strong anion exchange chromatography (SAX) and matrix assisted laser desorption ionization (MALDI) on-plate enrichment methods, especially, the materials used in these enrichment methods have been discussed in detail. At the end of this review, the advantages and disadvantages of each method are summarized, and a prospect of effective enrichment strategies of phosphopeptides is given. Contents 1 Introduction
2 Enrichment methods of phosphopeptides
2.1 Immobilized metal affinity chromatography
2.2 Metal oxide enrichment methods
2.3 Strong anion and cation exchange chromatography
2.4 Phosphopeptide enrichment on MALDI plate
3 Conclusion and outlook

CLC Number: 

[1] Han G H, Ye M L, Zou H F. Analyst, 2008, 133: 1128-1138
[2] Hochuli E, Dobeli H, Schacher A. J. Chromatogr., 1987, 411: 177-184
[3] Ye J Y, Zhang X M, Young C, Zhao X L, Hao Q, Cheng L, Jensen O N. J. Proteome Res., 2010, 9: 3561-3573
[4] Feng S, Pan C, Jiang X, Xu S, Zhou H, Ye M, Zou H. Proteomics, 2007, 7: 351-360
[5] Song C X, Ye M L, Han G H, Jiang X N, Wang F J, Yu Z Y, Chen R, Zou H F. Anal. Chem., 2010, 82: 53-56
[6] Hou C Y, Ma J F, Tao D Y, Shan Y C, Liang Z, Zhang L H, Zhang Y K. J. Proteome Res., 2010, 9: 4093-4101
[7] Qin W J, Zhang W J, Song L N, Zhang Y J, Qian X H. Anal. Chem., 2010, 82: 9461-9468
[8] Ficarro S B, Mccleland M L, Stukenberg P T, Burke D J, Ross M M, Shabanowitz J, Hunt D F, White F M. Nat. Biotechnol., 2002, 20: 301-305
[9] Moser K, White F M. J. Proteome Res., 2006, 5 (1): 98-104
[10] Ndassa Y M, Orsi C, Marto J A, Chen S, Ross M M. J. Proteome Res., 2006, 5: 2789-2799
[11] Neville D C A, Rozanas C R, Price E M, Gruis D B, Verkman A S, Townsend R R. Protein Sci., 1997, 6: 2436-2445
[12] Li S H, Dass C. Anal. Biochem., 1999, 270: 9-14
[13] 张丽媛(Zhang L Y), 王晖(Wang H), 梁振(Liang Z), 单亦初(Shan Y C), 张丽华(Zhang L H), 张玉奎(Zhang Y K). 分析化学(Chinese Journal of Analytical Chemistry), 2010, 5 (38): 659-662
[14] Zhang Y H, Yu X J, Wang X Y, Shan W, Yang P Y, Tang Y. Chem. Commun., 2004, 2882-2883
[15] Wu J H, Zhao Y, Li T, Xu C, Xiao K, Feng Y Q, Guo L. J. Sep. Sci., 2010, 33: 1806-1815
[16] Bakry R, Gjerde D, Bonn G K. J. Proteome Res. 2006, 5: 1321-1331
[17] Aprilita N H, Huck C W, Bakry R, Feuerstein I, Stecher G, Morandell S, Huang H L, Stasyk T, Huber L A, Bonn G K. J. Proteome Res., 2005, 4: 2312-2319
[18] Li X S, Wu J H, Zhao Y, Zhang W P, Gao Q, Guo L, Yuan B F, Feng Y Q. J. Chromatogr. A, 2011, 1218: 3845-3853
[19] Kokubu M, Ishihama Y, Sato T, Nagasu T, Oda Y. Anal. Chem., 2005, 77: 5144-5154
[20] Choi H, Lee S, Jun C D, Park Z Y. J. Chromatogr. B, 2011, 879: 2991-2997
[21] 厚瑞萍(Hou R P), 刘英超(Liu Y C), 邓春晖(Deng C H), 吴劲松(Wu J S). 生物技术(Biotechnology), 2009, 19 (4): 85-88
[22] Kosmulski M. Adv. Colloid Interface Sci., 2002, 99: 255-264
[23] Ikeguchi Y, Nakamura H. Anal. Sci., 1997, 13: 479-483
[24] Ikeguchi Y, Nakamura H. Anal. Sci., 2000, 16: 541-543
[25] Lu Z D, Duan J C, He L, Hu Y X, Yin Y D. Anal. Chem., 2010, 82: 7249-7258
[26] Eriksson A, Bergquist J, Edwards K, Hagfeldt A, Malmström D, Hernandez V C A. Anal. Chem., 2010, 82: 4577-4583
[27] Li Q R, Ning Z B, Tang J S, Nie S, Zeng R J. J. Proteome Res., 2009, 8: 5375-5381
[28] Zhou H J, Tian R J, Ye M L, Xu S Y, Feng S, Pan C S, Jiang X G, Li X, Zou H F. Electrophoresis, 2007, 28: 2201-2215
[29] Nelson C A, Szczech J R, Dooley C J, Xu Q, Lawrence M J, Zhu H, Jin S, Ge Y. Anal. Chem., 2010, 82: 7193-7201
[30] Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y. Mol. Cell. Proteomics, 2007, 6: 1103-1109
[31] Wang Y B, Chen W, Wu J S, Guo Y L, Xia X H. J. Am. Soc. Mass. Spectrom., 2007, 18: 1387-1395
[32] Kweon H K, Håkansson K. Anal. Chem., 2006, 78: 1743-1749
[33] 吴剑虹(Wu J H), 肖矿(Xiao K), 赵勇(Zhao Y), 章伟平(Zhang W P), 郭林(Guo L), 冯钰锜(Feng Y Q). 分析化学(Chinese Journal of Analytical Chemistry), 2010, 38 (9): 1231-1237
[34] Wu J H, Xiao K, Zhao Y, Zhang W P, Guo L, Feng Y Q. J. Sep. Sci., 2010, 33: 2361-2368
[35] Pang H, Lu Q, Gao F. Chem. Commun., 2011, 11772-11774
[36] Chen C T, Chen Y C. Anal. Chem., 2005, 77: 5912-5919
[37] Chen C T, Chen W Y, Tsai P J, Chien K Y, Yu J S, Chen Y C. J. Proteome Res., 2007, 6: 316-325
[38] Chen C T, Chen Y C. J. Biomed. Nanotechnol., 2008, 4: 73-79
[39] Cheng G, Zhang J L, Liu Y L, Sun D H, Ni J Z. Chem. Commun., 2011, 5732-5734
[40] Lu J, Qi D W, Deng C H, Zhang X M, Yang P Y. Nanoscale, 2010, 2: 1892-1900
[41] Lin H Y, Chen W Y, Chen Y C. J. Biomed. Nanotechnol., 2009, 5: 215-223
[42] Qi D W, Mao Y, Lu J, Deng C H, Zhang X M. J. Chromatogr. A, 2010, 1217: 2606-2617
[43] Min Q H, Zhang X X, Zhang H Y, Zhou F, Zhu J J. Chem. Commun., 2011, 11709-11711
[44] Han G H, Ye M L, Zhou H J, Jiang X M, Feng S, Jiang X G, Tian R J, Wan D F, Zou H F, Gu J R. J. Proteome Res., 2008, 8: 1346-1361
[45] Dong M M, Wu M G, Wang F J, Qin H Q, Han G H, Dong J, Wu R A, Ye M L, Liu Z, Zou H F. Anal. Chem., 2010, 82: 2907-2915
[46] Nie S, Dai J, Ning Z B, Cao X J, Sheng Q H, Zeng R. J. Proteome Res., 2010, 9: 4585-4594
[47] Zhai B, Villén J, Beausoleil S A, Mintseris J, Gygi S P. J. Proteome Res., 2008, 7: 1675-1682
[48] Wang F J, Han G H, Yu Z Y, Jiang X N, Sun S T, Chen R, Ye M L, Zou H F. J. Sep. Sci., 2010, 33: 1879-1887
[49] Zarei M, Sprenger A, Metzger F, Gretzmeier C, Dengjel J. J. Protoeme Res., 2011, 10: 3474-3483
[50] Dunn J D, Watson T J, Bruening M L. Anal. Chem., 2006, 78: 1574-1580
[51] Zhou H J, Xu S Y, Ye M L, Feng S, Pan C S, Jiang X G, Li X, Han G H, Fu Y, Zou H F. J. Proteome Res., 2006, 5: 2431-2437
[52] Hoang T, Roth U, Kowalewski K, Belisle C, Steinert K, Karas M. Anal. Chem., 2010, 82: 219-228
[53] Eriksson A, Bergquist J, Edwards K, Hagfeldt A, Malmström D, Hernández V A. Anal. Chem., 2011, 83: 761-766
[54] Torta F, Fusi M, Casari C S, Bottani C E, Bachi A. J. Proteome Res., 2009, 8: 1932-1942
[55] Wang H, Duan J C, Cheng Q. Anal. Chem., 2011, 83: 1624-1631
[56] Kouvonen P, Rainio E, Suni V, Koskinen P, Corthals G L. Mol. BioSyst., 2011, 7: 1828-1837
[57] Sun S T, Ma H T, Han G H, Wu R A, Zou H F, Liu Y W. Rapid Commun. Mass Spectrom., 2011, 25: 1862-1868
[58] Wang W H, Bruening M L. Analyst, 2009, 134: 512-518
[59] Wang W H, Palumbo A M, Tan Y J, Reid G E, Tepe J J, Bruening M L. J. Proteome Res., 2010, 9: 3005-3015
[60] Dunn J D, Reid G E, Bruening M L. Mass Spectrom. Rev., 2010, 29: 29-54
[61] 柏兆方(Bai Z F), 王红霞(Wang H X). 分析化学(Analytical Chemistry), 2009, 37 (9): 1382-1389
[1] Cheng Gong, Wang Zhigang, Liu Yanlin, Zhang Jilin*, Sun Dehui, Ni Jiazuan. Phosphoprotein/Phosphopeptide Enrichment and Analysis Based on Nanostructured Materials [J]. Progress in Chemistry, 2013, 25(04): 620-632.