中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (9): 1696-1706 Previous Articles   Next Articles

• Review •

Catalysts for Carbon Dioxide Catalytic Reforming of Methane to Synthesis Gas

Wang Li, Ao Xianquan, Wang Shihan   

  1. School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
  • Received: Revised: Online: Published:
PDF ( 1247 ) Cited
Export

EndNote

Ris

BibTeX

The natural resources of methane are abundant,and methane also can be produced from biomass by fermentation process. It is an effective way to use two kinds of greenhouse gases simultaneously through preparation of synthesis gas by CH4-CO2 catalytic reforming, so this technique has a great significance to clean energy and environment protection. In recent years, a great attention has been paid to the catalysts, reaction mechanism and some unconventional means of this process due to their greater advantages compared to other methane conversion techniques. The recent studies in catalysts of this process including catalytic active components, supports,additives, carbon deposition of catalyst and catalyst preparation methods are reviewed in this paper. A series of influencing factors in the resistance to carbon deposition are summarized. The emphasis is on the activity and stability of supported bimetallic catalysts, metal composite oxide catalysts and metal oxide carrier, the influence of preparation methods on catalytic activity and the resistance to carbon deposition, as well as the method of catalyst resistance to carbon deposition and the plasma technologies for CH4-CO2 reforming. The reaction mechanism most researchers considered that the reaction process is principally affected by the surface oxygen atoms, surface hydrogen atoms and the catalyst surface actives, is introduced. Finally, the development trend and future prospects of the bimetallic catalysts, the perovskite type catalysts, the mesoporous type catalysts, the plasma synergetic catalysis technology and the study on the mechanism are given. Contents 1 Introduction
2 Catalysts
2.1 Loaded catalysts
2.2 Metal composite oxide catalysts
2.3 Carbide catalysts
2.4 Mesoporous catalysts
2.5 Preparation methods and conditions of catalysts
2.6 Resistance to carbon deposition
3 Plasma technologies for CH4-CO2 reforming
3.1 CH4-CO2 reforming by plasma
3.2 Plasma synergetic catalysis technology
3.3 Catalyst preparation by plasma
4 Mechanisms
5 Conclusion and outlook

CLC Number: 

[1] Sun L Z, Tan Y S, Zhang Q D, Xie H J, Han Y Z. Int. J. Hyd. Energ., 2011, 36: 12259-12267
[2] Lau C S, Tsolakis A M L. Int. J. Hyd. Energ., 2011, 36: 397-404
[3] Shiratori Y, Ijichi T, Oshima T, Sasaki K. Int. J. Hyd. Energ., 2010, 35: 7905-7912
[4] Amini H R, Reinhart D R. Waste Manage, 2011, 31: 2020-2026
[5] Bermúdez J M, Fidalgo B, Arenillas A, Menéndez J A. Fuel, 2012, 94: 197-203
[6] Endo T, KajiyaY, Nagayasu H, Iijima M, Ohishi T, Tanaka H, Mitchell R. Energy Procedia, 2011, 4: 1513-1519
[7] Shu J F, Chen X J, Chou I M, Yang W G, Hu J Z, Hemley R J, Mao H. Geosci. Frontiers, 2011, 2: 93-100
[8] Wagar W R, Zamfirescu C, Dincer I. Int. J. Hyd. Energ., 2011, 36: 7002-7011
[9] 敖先权(Ao X Q), 王华(Wang H), 魏永刚(Wei Y G). 太阳能学报(Acta Energiae Solaris Sinica), 2008, 25(12): 1528-1532
[10] 桑丽霞(Sang L X), 孙彪(Sun B), 李艳霞(Li Y X), 吴玉庭(Wu Y T), 马重芳(Ma C F). 化学进展(Prog. Chem. ), 2011, 23(11): 2233-2239
[11] Edwards J H, Maitra A M. Fuel Process. Technol., 1995, 42: 269-289
[12] Rostrupnielsen J R, Hansen J H B. J. Catalysis, 1993, 144: 38- 49
[13] Ferreira-Aparicio P, Guerrero-Ruiz A, guez-Ramos I R. Appl. Catal. A-Gen., 1998, 170: 177-187
[14] Tang S B, Qiu F L, Lu S J. Catal. Today, 1995, 24: 253-255
[15] Wang H Y, Au C T. Appl. Catal. A-Gen., 1997, 155: 239-252
[16] Wang S B, Lu G Q. Appl. Catal. A-Gen., 1998, 169: 271-280
[17] García-Diéguez M, Finocchio E, Larrubia M A, Alemany L J, Busca G. J. Catalysis, 2010, 274: 11-20
[18] García-Diéguez M, Pieta I S, Herrera M C, Larrubia M A, Alemany L J. J. Catalysis, 2010, 270: 136-145
[19] Meshkani F, Rezaei M. Int. J. Hyd. Energ., 2010, 35: 10295- 10301
[20] Liu D P, Cheo W N E, Lim Y W Y, Borgna A, Lau R, Yang Y H. Catal. Today, 2010, 154: 229-236
[21] Ocsachoque M, Pompeo F, Gonzalez G. Catal. Today, 2011, 172: 226-231
[22] Özkara-Aydíno lu S, Aksoylu A E. Int. J. Hyd. Energ., 2011, 36: 2950-2959
[23] Huang T, Huang W, Huang J, Ji P. Fuel Proc. Technol., 2011, 92: 1868-1875
[24] Fan M S, Abdullah A Z, Bhatia S. Appl. Catal. B Environ., 2010, 100: 365-377
[25] Steinhauer B, Kasireddy M R, Radnik J, Martin A. Appl. Catal. A-Gen., 2009, 366: 333-341
[26] Liu D P, Quek X Y, Cheo W N E, Lau R, Borgna A, Yang Y H. J. Catalysis, 2009, 266: 380-390
[27] Meshkani F, Rezaei M. Catal. Commun., 2011, 12: 1046-1050
[28] Asencios Y J O, Bellido J D A, Assaf E M. Appl. Catal. A-Gen., 2011, 397: 138-144
[29] Chen J X, Yao C C, Zhao Y Q, Jia P H. Int. J. Hyd. Energ., 2010, 35: 1630-1642
[30] García-Diéguez M, Pieta I S, Herrera M C, Larrubia M A, Malpartida I, Alemany L J. Catal. Today, 2010, 149: 380-387
[31] Rezaei M, Alavi S M, Sahebdelfar S, Yan Z F. Scripta Mater., 2009, 61: 173-176
[32] Tao K, Zhang Y, Terao S, Tsubaki N. Catal. Today, 2010, 153: 150-155
[33] Tao K, Zhang Y, Terao S, Yoneyama Y, Kawabata T, Matsuda K, Ikeno S, Tsubaki N. Chem. Engn. J., 2011, 170: 258-263
[34] Rivas I, Alvarez J, Pietri E, Pérez-Zurita M J, Goldwasser M R. Catal. Today, 2010, 149: 388-393
[35] Reddy G K, Loridanta S, Takahashi A, Delichère P, Reddy B M. Appl. Catal. A-Gen., 2010, 389: 92-100
[36] Kambolis A, Matralis H, Trovarelli A, Papadopoulou C. Appl. Catal. A-Gen., 2010, 377: 16-26
[37] Pietraszek A, Koubaissy B, Roger A C, Kiennemann A. Catal. Today, 2011, 176: 267-271
[38] Frontera P, Macariob A, Aloise A, Crea F, Antonucci P L, Nagy J B, Frusteri F, Giordano G. Catal. Today, 2012, 179: 52-60
[39] Gamba O, Moreno S, Molina R. Int. J. Hyd. Energ., 2011, 36: 1540-1550
[40] Fidalgo B, Zubizarreta L, Bermúdez J M, Arenillas A, Menéndez J A. Fuel Proc. Technol., 2010, 91: 765-769
[41] Soloviev S O, Kapran A Y, Orlyk S N, Gubareni E V. J. Nat. Gas Chem., 2011, 20: 184-190
[42] Pinheiro A L, Pinheiro A N, Valentini A, Filho J M, Sousa F F, Sousa J R, Rocha M G C, Bargiela P, Oliveira A C. Catal. Commun., 2009, 11: 11-14
[43] Damyanova S, Pawelec B, Arishtirova K, Fierro J L G. Int. J. Hyd. Energ., 2011, 36: 10635-10647
[44] 郎宝(Lang B), 李秀金(Li X J), 季生福(Ji F S), Fabien H, 李成岳(Li C Y). 物理化学学报(Acta Physico- Chimica Sinica), 2009, 25(8): 1611-1617
[45] Zhu J Q, Peng X X, Yao L, Shen J, Tong D M, Hu C W. Int. J. Hyd. Energ., 2011, 36: 7094-7104
[46] 徐军科(Xu J K), 任克威(Ren K W), 王晓蕾(Wang X L), 周伟(Zhou W), 潘相敏(Pan X M), 马建新(Ma J X). 物理化学学报(Acta Physico-Chimica Sinica), 2008, 24 (9): 1568-1572
[47] Foo S Y, Cheng C K, Nguyen T H, Adesina A A. Catal. Today, 2011, 164: 221-226
[48] Daza C E, Gallego J, Mondragón F, Moreno S, Molina R. Fuel, 2010, 89: 592-603
[49] Özkara-Aydíno lu S, Aksoylu A E. Catal. Commun., 2010, 11: 1165-1170
[50] Daza C E, Moreno S, Molina R. Int. J. Hyd. Energ., 2011, 36: 3886-3894
[51] Nagaraja B M, Bulushev D A, Beloshapkin S, Ross J R H. Catal. Today, 2011, 178: 132-136
[52] José-Alonso D S, Illán-Gómez M J, Román-Martínez M C. Catal. Today, 2011, 176: 187-190
[53] García V, Fernández J J, Ruíz W, Mondragón F, Moreno A. Catal. Commun., 2009, 11: 240-246
[54] Yasyerli S, Filizgok S, Arbag H, Yasyerli N, Dogu G. Int. J. Hyd. Energ, 2011, 36: 4863-4874
[55] Sutthiumporn K, Kawi S. Int. J. Hyd. Energ., 2011, 36: 14435-14446
[56] García-Diéguez M, Herrera M C, Pieta I S, Larrubia M A, Alemany L J. Catal. Commun., 2010, 11: 1133-1136
[57] Al-Fatesh A S A, Fakeeha A H, Abasaeed A E. Chin. J. Catal., 2011, 32: 1604-1609
[58] Wang N, Chu W, Huang L Q, Zhang T. J. Nat. Gas Chem., 2010, 19: 117-122
[59] Wang N, Chu W, Zhang T, Zhao X S. Chem. Eng. J., 2011, 170: 457-463
[60] Kapokova L, Pavlova S, Bunina R, Alikina G, Krieger T, Ishchenko A, Rogov V, Sadykov V. Catal. Today, 2011, 164: 227-233
[61] Gaur S, Haynes D J, Spivey J J. Appl. Catal. A-Gen., 2011, 403: 142-151
[62] Cheng J M, Huang W. Fuel Process. Technol., 2010, 91: 185-193
[63] Hirose T, Ozawa Y, Nagai M. Chin. J. Catal., 2011, 32: 771-776
[64] Sokolov S, Kondratenko E V, Pohl M M, Barkschat A, Rodemerck U. Appl. Catal. B Environ., 2012, 113/114: 19-30
[65] Liu D P, Lau R, Borgna A, Yang Y H. Appl. Catal. A-Gen., 2009, 358: 110-118
[66] Xu L L, Song H L, Chou L J. Appl. Catal. B Environ., 2011, 108/109: 177-190
[67] Shen W H, Momoi H, Komatsubara K, Saito T, Yoshida A, Naito S. Catal. Today, 2011, 171: 150-155
[68] Newnham J, Mantri K, Amin M H, Tardio J, Bhargava S K. Int. J. Hyd. Energ., 2012, 37: 1454-1464
[69] Liu D P, Quek X Y, Wah H H A, Zeng G G, Li Y D, Yang Y H. Catal. Today, 2009, 148: 243-250
[70] Quek X Y, Liu D P, Cheo W N E, Wang H, Chen Y, Yang Y H. Appl. Catal. B-Environ., 2010, 95: 374-382
[71] Sun N N, Wen X, Wang F, Peng W C, Zhao N, Xiao F K, Wei W, Sun Y H, Kang J T. Appl. Surf. Sci., 2011, 257: 9169-9176
[72] Kang K M, Kima H W, Shim I W, Kwak H Y. Fuel Process. Technol., 2011, 92: 1236-1243
[73] García-Diéguez M, Pieta I S, Herrera M C, Larrubia M A, Alemany L J. Appl. Catal. A-Gen., 2010, 377: 191-199
[74] Arbag H, Yasyerli S, Yasyerli N, Dogu G. Int. J. Hyd. Energ., 2010, 35: 2296-2304
[75] Zhang A J, Zhu A M, Chen B B, Zhang S H, Au C, Shi C. Catal. Commun., 2011, 12: 803-807
[76] Gonzalez-Delacruz V M, Ternero F, Pereñíguez R, Caballero A, Holgado J P. Appl. Catal. A-Gen., 2010, 384: 1-9
[77] Juan-Juan J, Román-Martínez M C, Illán-Gómez M J. Appl. Catal. A-Gen., 2009, 355: 27-32
[78] Nikoo M K, Amin N A S. Fuel Process. Technol., 2011, 92: 678-691
[79] Arkatova L A. Catal. Today, 2010, 157: 170-176
[80] Guczi L, Stefler G, Geszti O, Sajó I, Pászti Z, Tompos A, Schay Z. Appl. Catal. A-Gen., 2010, 375: 236-246
[81] 张轲(Zhang K), 周广栋(Zhou G D), 李菁(Li J), 程铁欣(Cheng T X). 催化学报(Chinese J. Catal.), 2010, 31(3): 343-347
[82] Horváth A, Stefler G, Geszti O, Kienneman A, Pietraszek A, Guczi L. Catal. Today, 2011, 169: 102-111
[83] Pholjaroen B, Laosiripojana N, Praserthdam P,Assabumrungrat S. J. Ind. Eng. Chem., 2009, 15: 488-497
[84] Assabumrungrat S, Charoenseri S, Laosiripojana N, Kiatkittipong W, Praserthdam P. Int. J. Hyd. Energ., 2009, 34: 6211-6220
[85] Moniri A, Alavi S M, Rezaei M. J. Nat. Gas Chem., 2010, 19: 638-641
[86] Li X, Bai M G, Tao X M, Shang S Y, Yin Y X, Dai X Y. J. Fuel Chem. Technol., 2010, 38: 195-200
[87] Li D H, Li X, Yin Y X, Tao X M, Shang S Y, Dai X Y. Int. J. Hyd. Energ., 2009, 34: 308-313
[88] Ghorbanzadeh A M, Lotfalipour R, Rezaei S. Int. J. Hyd. Energ., 2009, 34: 293-298
[89] 颜彬航(Yan B H), 王琦(Wang Q), 金涌(Jin Y), 程易(Cheng Y). 化工学报(CIESC Jounal), 2010, 61(11): 2919-2923
[90] Ni G H, Lan Y, Cheng C, Meng Y D, Wang X K.  Int. J. Hyd. Energ., 2011, 36: 12869-12876
[91] 张安杰(Zhang A J), 丁天英(Ding T Y), 刘云(Liu Y), 石川(Shi C). 分子催化(J. Mol. Catal. (China)), 2011, 25(1): 11-16
[92] Wang Q, Shi H L, Yan B H, Jin Y, Cheng Y. Int. J. Hyd. Energ., 2011, 36: 8301-8306
[93] 柴晓燕(Chai X Y), 尚书勇(Shang S Y), 刘改焕(Liu G H), 陶旭梅(Tao X M), 李祥(Li X), 白玫瑰(Bai M G), 戴晓雁(Dai X Y), 印永祥(Yin Y X). 催化学报(Chin. J. Catal.), 2010, 31(3): 353-359
[94] Qin P, Xu H Y, Long H L, RanY, Shang S Y, Yin Y X, Dai X Y. J. Nat. Gas Chem., 2011, 20: 487-492
[95] Shang S Y, Liu G H, Chai X Y, Tao X M, Li X, Bai M G, Chu W, Dai X Y, Zhao Y X, Yin Y X. Catal. Today, 2009, 148: 268-274
[96] Hua W, Jin L J, He X F, Liu J H, Hu H Q. Catal. Commun., 2010, 11: 968-972
[97] Efstathiou A M, Kladi A, Tsipouriari V A, Verykios X E. J. Catal., 1996, 158: 64-75
[98] Qian L P, Ren Y, Yu H, Wang Y, Yue B, He H Y. Appl. Catal. A-Gen., 2011, 401: 114-118
[99] 徐军科(Xu J K), 沈利红(Shen L H), 周伟(Zhou W), 马建新(Ma J X). 物理化学学报(Acta Physico-Chimica Sinica), 2011, 27(3): 697-704
[100] McGuire N E, Sullivan N P, Deutschmann O, Zhu H Y, Kee R J. Appl. Catal. A-Gen., 2011, 394: 257-265
[101] Sadykov V A, Gubanova E L, Sazonova N N, Pokrovskaya S A, Chumakova N A, Mezentseva N V, Bobin A S, Gulyaev R V, Ishchenko A V, Krieger T A, Mirodatos C. Catal. Today, 2011, 171: 140-149
[102] Moradi G R, Rahmanzadeh M, Sharifnia S. Chem. Eng. J., 2010, 162: 787-791
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[5] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[6] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[7] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[8] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[9] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[10] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[11] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[12] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[13] Bai Wenji, Shi Yubing, Mu Weihua, Li Jiangping, Yu Jiawei. Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions [J]. Progress in Chemistry, 2022, 34(10): 2283-2301.
[14] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[15] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.